Browsing by Subject "Temperature distribution"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Calculation of temperature distribution and thermo-optical effects in double-end-pumped slab laser(2011) Elahi P.; Morshedi, S.The temperature distribution and thermo-optical effects in a double-end-pumped slab laser are investigated analytically. The theoretical model is given by considering heat generation on both sides of an active medium due to pumping. With account for the pump beam divergence and the heat load, the heat conduction equation is solved, and the temperature distribution and thermal effects, such as thermal lensing and thermal stress, are obtained. The results are applied to a typical Nd:YVO 4 laser crystal slab and discussed. ©2011 Springer Science+Business Media, Inc.Item Open Access Drag effect in double-layer dipolar fermi gases(IOP, 2014) Tanatar, Bilal; Renklioğlu, Başak; Öktel, M. ÖzgürWe consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas without any tunneling between the layers. The effective interactions describing screening and correlation effects between the dipoles in a single layer (intra-layer) and across the layers (interlayer) are modeled within the Hubbard approximation. We calculate the rate of momentum transfer between the layers when the gas in one layer has a steady flow. The momentum transfer induces a steady flow in the second layer which is assumed initially at rest. This is the drag effect familiar from double-layer semiconductor and graphene structures. Our calculations show that the momentum relaxation time has temperature dependence similar to that in layers with charged particles which we think is related to the contributions from the collective modes of the system.Item Open Access Effects of field plate on the maximum temperature and temperature distribution for gan HEMT devices(American Society of Mechanical Engineers, 2016) Kara D.; Donmezer N.; Canan, Talha Furkan; Şen, Özlem; Özbay, EkmelField plated GaN high electron mobility transistors (HEMTs) are widely preferred amongst other GaN HEMT devices because of their ability to regulate electric field at high power densities. When operated at high power densities, GaN HEMTs suffer significantly from the concentrated heating effects in a small region called hotspot located closer to the drain edge of the gate. Although; the stabilizing effect of field plate on the electrical field distribution in HEMTs is known by researchers, its effect on temperature distribution and the hotspot temperature is still not studied to a greater extend. For this purpose, finite element thermal modelling of devices with different sizes of field plates are performed using the joule heating distribution data obtained from 2D electrical simulations. Results obtained from such combined model show that the existence of a field plate changes the electrical field, therefore the heat generation distribution within device. Moreover; increasing the size of the field plate has an effect on the maximum temperature at the hotspot region. The results are used to analyze these effects and improve usage of field plates for high electron mobility transistors to obtain better temperature profiles. Copyright © 2016 by ASME.Item Open Access Electrical conduction properties of Si δ-doped GaAs grown by MBE(2009) Yildiz, A.; Lisesivdin, S.B.; Altuntas H.; Kasap, M.; Ozcelik, S.The temperature dependent Hall effect and resistivity measurements of Si δ-doped GaAs are performed in a temperature range of 25-300 K. The temperature dependence of carrier concentration shows a characteristic minimum at about 200 K, which indicates a transition from the conduction band conduction to the impurity band conduction. The temperature dependence of the conductivity results are in agreement with terms due to conduction band conduction and localized state hopping conduction in the impurity band. It is found that the transport properties of Si δ-doped GaAs are mainly governed by the dislocation scattering mechanism at high temperatures. On the other hand, the conductivity follows the Mott variable range hopping conduction (VRH) at low temperatures in the studied structures. © 2009 Elsevier B.V. All rights reserved.Item Open Access Electrical performance of InAs/AlSb/GaSb superlattice photodetectors(Academic Press, 2016) Tansel, T.; Hostut M.; Elagoz, S.; Kilic A.; Ergun, Y.; Aydınlı, AtillaTemperature dependence of dark current measurements is an efficient way to verify the quality of an infrared detector. Low dark current density values are needed for high performance detector applications. Identification of dominant current mechanisms in each operating temperature can be used to extract minority carrier lifetimes which are highly important for understanding carrier transport and improving the detector performance. InAs/AlSb/GaSb based T2SL N-structures with AlSb unipolar barriers are designed for low dark current with high resistance and detectivity. Here we present electrical and optical performance of such N-structure photodetectors.Item Open Access Extracting the temperature distribution on a phase-change memory cell during crystallization(American Institute of Physics Inc., 2016-10) Bakan, G.; Gerislioglu, B.; Dirisaglik, F.; Jurado, Z.; Sullivan, L.; Dana, A.; Lam, C.; Gokirmak A.; Silva, H.Phase-change memory (PCM) devices are enabled by amorphization- and crystallization-induced changes in the devices' electrical resistances. Amorphization is achieved by melting and quenching the active volume using short duration electrical pulses (∼ns). The crystallization (set) pulse duration, however, is much longer and depends on the cell temperature reached during the pulse. Hence, the temperature-dependent crystallization process of the phase-change materials at the device level has to be well characterized to achieve fast PCM operations. A main challenge is determining the cell temperature during crystallization. Here, we report extraction of the temperature distribution on a lateral PCM cell during a set pulse using measured voltage-current characteristics and thermal modelling. The effect of the thermal properties of materials on the extracted cell temperature is also studied, and a better cell design is proposed for more accurate temperature extraction. The demonstrated study provides promising results for characterization of the temperature-dependent crystallization process within a cell.Item Open Access Hard turning with variable micro-geometry PcBN tools(Elsevier, 2008) Özel, T.; Karpat, Y.; Srivastava, A.This paper presents investigations on hard turning with variable edge design PcBN inserts. Turning of hardened AISI 4340 steel with uniform and variable edge design PcBN inserts is conducted, forces and tool wear are measured. 3D finite element modelling is utilized to predict chip formation, forces, temperatures and tool wear on uniform and variable edge micro-geometry tools. Predicted forces and tool wear contours are compared with experiments. The temperature distributions and tool wear contours demonstrate the advantages of variable edge micro-geometry design.Item Open Access Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process(Elsevier Ltd, 2013) Shabgard, M.; Ahmadi, R.; Seyedzavvar, M.; Oliaei, S.N.B.In the present study, the temperature distribution on the surface of workpiece and tool during a single discharge in the electrical discharge machining process has been simulated using ABAQUS code finite element software. The temperature dependency of material properties and the expanding of plasma channel radius with time have been employed in the simulation stage. The profile of temperature distribution has been utilized to calculate the dimensions of discharge crater. Based on the results of FEM and the experimental observations, a numerical analysis has been developed assessing the contribution of input-parameters on the efficiency of plasma channel in removing the molten material from molten puddles on the surfaces of workpiece and tool at the end of each discharge. The results show that the increase in the pulse current and pulse on-time have converse effects on the plasma flushing efficiency, as it increases by the prior one and decreases by the latter one. Later, the introduced formulas for plasma flushing efficiency based on regression model were utilized to predict the cardinal parameter of recast layer thickness on the electrodes which demands expensive empirical tests to be obtained. © 2012 Elsevier Ltd. All rights reserved.Item Open Access The substrate temperature dependent electrical properties of titanium dioxide thin films(2010) Yildiz, A.; Lisesivdin, S.B.; Kasap, M.; Mardare, D.Titanium dioxide thin films were obtained by a dc sputtering technique onto heated glass substrates. The relationship between the substrate temperature and the electrical properties of the films was investigated. Electrical resistivity measurements showed that three types of conduction channels contribute to conduction mechanism in the temperature range of 13-320 K. The temperature dependence of electrical resistivity between 150 and 320 K indicated that electrical conductioninthe films was controlled by potential barriers caused by depletion of carriers at grain boundaries. The conduction mechanism of the films was shifted from grain boundary scattering dominated band conduction to the nearest neighbor hopping conduction at temperatures between 55 and 150 K. Below 55 K, the temperature dependence of electrical resistivity shows variable range hopping conduction. The correlation between the substrate temperature and resistivity behaviorisdiscussed by analyzing the physical plausibility of the hopping parameters and material properties derived by applying different conduction models. With these analyses, various electrical parameters of the present samples such as barrier height, donor concentration, density of states at the Fermi level, acceptor concentration and compensation ratio were determined. Their values as a function of substrate temperature were compared. © Springer Science+Business Media, LLC 2009.