Browsing by Subject "Temperature dependencies"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Effective mass of electron in monolayer graphene: Electron-phonon interaction(AIP Publishing LLC, 2013-01-25) Tiras, E.; Ardali, S.; Tiras, T.; Arslan, E.; Cakmakyapan, S.; Kazar, O.; Hassan, J.; Janzén, E.; Özbay, EkmelShubnikov-de Haas (SdH) and Hall effect measurements performed in a temperature range between 1.8 and 275 K, at an electric field up to 35 kV m -1 and magnetic fields up to 11 T, have been used to investigate the electronic transport properties of monolayer graphene on SiC substrate. The number of layers was determined by the use of the Raman spectroscopy. The carrier density and in-plane effective mass of electrons have been obtained from the periods and temperature dependencies of the amplitude of the SdH oscillations, respectively. The effective mass is in good agreement with the current results in the literature. The two-dimensional (2D) electron energy relaxations in monolayer graphene were also investigated experimentally. The electron temperature (Te) of hot electrons was obtained from the lattice temperature (TL) and the applied electric field dependencies of the amplitude of SdH oscillations. The experimental results for the electron temperature dependence of power loss indicate that the energy relaxation of electrons is due to acoustic phonon emission via mixed unscreened piezoelectric interaction and deformation-potential scattering.Item Open Access Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process(Elsevier Ltd, 2013) Shabgard, M.; Ahmadi, R.; Seyedzavvar, M.; Oliaei, S.N.B.In the present study, the temperature distribution on the surface of workpiece and tool during a single discharge in the electrical discharge machining process has been simulated using ABAQUS code finite element software. The temperature dependency of material properties and the expanding of plasma channel radius with time have been employed in the simulation stage. The profile of temperature distribution has been utilized to calculate the dimensions of discharge crater. Based on the results of FEM and the experimental observations, a numerical analysis has been developed assessing the contribution of input-parameters on the efficiency of plasma channel in removing the molten material from molten puddles on the surfaces of workpiece and tool at the end of each discharge. The results show that the increase in the pulse current and pulse on-time have converse effects on the plasma flushing efficiency, as it increases by the prior one and decreases by the latter one. Later, the introduced formulas for plasma flushing efficiency based on regression model were utilized to predict the cardinal parameter of recast layer thickness on the electrodes which demands expensive empirical tests to be obtained. © 2012 Elsevier Ltd. All rights reserved.