BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "System Matrix"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fast calibration and image reconstruction for magnetic particle imaging
    (2018-05) İlbey, Serhat
    Magnetic particle imaging (MPI) is a relatively new medical imaging modality that images the spatial distribution of magnetic nanoparticles (MNPs) administered to the body. For image reconstruction with the system matrix (SM) approach, a time-consuming calibration scan is necessary, in which a single MNP sample is placed and scanned inside the full eld-of-view (FOV). Moreover, for a relatively large 3D high-resolution FOV, the reconstructed SM is too large to get high quality images in real-time using the standard state-of-the-art techniques. In this thesis, for the calibration scan, the use of coded calibration scenes (CCSs) is proposed, which utilizes MNP samples at multiple positions inside the FOV. The SM, which is sparse in the discrete cosine transform domain, is reconstructed using the Alternating Direction Method of Multipliers (ADMM) with l1-norm minimization. The e ectiveness of the CCSs for di erent parameter sets is analyzed via simulations, and the results are compared with the standard sparse reconstruction technique. As the MPI images are naturally sparse, ADMM is also proposed for image reconstruction, minimizing the total variation and l1-norm. Image quality is compared with the images obtained by widely used MPI image reconstruction algorithms: Algebraic Reconstruction Technique, Nonnegative Fused LASSO, and X-space-based projection reconstruction. Moreover, ADMM is parallelized on a GPU for real-time image reconstruction. The results show that the required number of measurements for system calibration is substantially reduced with the proposed methods, and the reconstruction performance is signi cantly improved in terms of both image quality and speed.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback