Fast calibration and image reconstruction for magnetic particle imaging

Available
The embargo period has ended, and this item is now available.

Date

2018-05

Editor(s)

Advisor

Çukur, Emine Ülkü Sarıtaş

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
5
views
25
downloads

Series

Abstract

Magnetic particle imaging (MPI) is a relatively new medical imaging modality that images the spatial distribution of magnetic nanoparticles (MNPs) administered to the body. For image reconstruction with the system matrix (SM) approach, a time-consuming calibration scan is necessary, in which a single MNP sample is placed and scanned inside the full eld-of-view (FOV). Moreover, for a relatively large 3D high-resolution FOV, the reconstructed SM is too large to get high quality images in real-time using the standard state-of-the-art techniques. In this thesis, for the calibration scan, the use of coded calibration scenes (CCSs) is proposed, which utilizes MNP samples at multiple positions inside the FOV. The SM, which is sparse in the discrete cosine transform domain, is reconstructed using the Alternating Direction Method of Multipliers (ADMM) with l1-norm minimization. The e ectiveness of the CCSs for di erent parameter sets is analyzed via simulations, and the results are compared with the standard sparse reconstruction technique. As the MPI images are naturally sparse, ADMM is also proposed for image reconstruction, minimizing the total variation and l1-norm. Image quality is compared with the images obtained by widely used MPI image reconstruction algorithms: Algebraic Reconstruction Technique, Nonnegative Fused LASSO, and X-space-based projection reconstruction. Moreover, ADMM is parallelized on a GPU for real-time image reconstruction. The results show that the required number of measurements for system calibration is substantially reduced with the proposed methods, and the reconstruction performance is signi cantly improved in terms of both image quality and speed.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type