Browsing by Subject "Surfaces (Physics)"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access Beaming and localization of electromagnetic waves in periodic structures(2010) Çağlayan, HümeyraWe want to manipulate light for several applications: microscopy, data storage, leds, lasers, modulators, sensor and solarcells to make our life healthier, easier or more comfortable. However, especially in small scales manipulating light have many difficulties. We could not focus or localize light into subwavelength dimensions easily, which is the key solution to beat today’s devices both in performance and cost. Achievements in three key research fields may provide the answer to these problems. These emerging research fields are metamaterials, photonic crystals and surface plasmons. In this thesis, we investigated beaming and localization of electromagnetic waves in periodic structures such as: subwavelength metallic gratings, photonic crystals and metamaterials. We studied off-axis beaming from both a metallic subwavelength aperture and photonic crystal waveguide at microwave regime. The output surfaces are designed asymmetrically to change the beaming angle. Furthermore, we studied frequency dependent beam steering with a photonic crystal with a surface defect layer made of dimmers. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Thus, a photonic crystal based surface wave structure that acts as a frequency dependent leaky wave antenna was presented. Additionally, we investigated metamaterial based cavity systems. Since the unit cells of metamaterials are much smaller than the operation wavelength, we observed subwavelength localization within these metamaterial cavity structures. Moreover, we introduced coupled-cavity structures and presented the transmission spectrum of metamaterial based coupled-cavity structures. Finally, we demonstrated an ultrafast bioassay preparation method that overcomes the today’s bioassay limitations using a combination of low power microwave heating and split ring resonator structures.Item Open Access Computation of surface fields excited on arbitrary smooth convex surfaces with an impedance boundary condition(2012) Alişan, BurakDue to an increase in the use of conformal antennas in military and commercial applications, the study of surface fields excited by a current distribution on material coated perfect electric conductor (PEC) surfaces is becoming more important. These surface fields are useful in the efficient evaluation of mutual coupling of conformal slot/aperture antennas as well as in the design/analysis of conformal antennas/arrays which can be mounted on aircrafts, missiles, mobile base stations, etc. On the other hand, impedance boundary condition (IBC) is widely used in surface field problems because it can model a thin material coated (or partially coated) PEC geometry and reduces the complexity of the surface field problem by relating the tangential electric fields to the tangential magnetic fields on the surface. Evaluation of surface fields on the circular cylinder and sphere geometries is a canonical problem and stands as a building block for the general problem of surface fields excited on arbitrary smooth convex surfaces. Therefore, high frequency based asymptotic solutions for the surface fields on a source excited PEC convex surface have been investigated for a long time, and surface fields on such surfaces have been obtained by generalizing the surface field expressions of the PEC cylinder and sphere. In this dissertation, a uniform geometrical theory of diffraction (UTD)-based high frequency asymptotic formulation for the appropriate Green’s function representation pertaining to the surface fields excited by a magnetic current source located on an arbitrary smooth convex surface with an IBC is developed. In the course of obtaining the final UTD-based Green’s function representation, surface field expressions of cylinder and sphere geometries are written in normal, binormal, tangent [(ˆn, ˆb,tˆ)] coordinates and their important parameters such as the divergence factor, the Fock parameter and Fock type integrals are generalized according to the locality of high frequency wave propagation. The surface field expressions for the arbitrary convex impedance surface are then written by blending the sphere and cylinder solutions through blending functions, which are introduced heuristically. Numerical results are selected from singly and doubly curved surfaces. Because of the lack of numerical results for the surface fields for impedance surfaces in the literature, obtained results are compared with those of PEC surfaces in the limiting case where the surface impedance,Zs → 0.Item Open Access Coupled surface plasmon structures and applications(2009) Gürel, KemalSurface plasmons have attracted great interest during past decades due to their unique physical properties. In this thesis, we study grating-coupled surface plasmons for sensing and filtering applications. We first present simple physical and chemical procedures that allow tuning and modification of the topography of gratings present in optical storage discs into geometries optimal for grating coupled plasmon resonance excitation. After proper metal coating, the tuned surfaces exhibit sharp plasmon resonances that can be excited at wavelengths ranging from 260 nm to over 2.7 µm with relatively high quality factors. As an immediate exemplary application, use of such optimized gratings in aqueous medium for refractive index measurement is demonstrated. We also report another plasmonic component based on a pair of surfaces displaying grating coupled plasmon enhanced transmission. We observe high quality factor transmission peaks as high as 100 through our plasmonic filter based on gratings obtained directly from optical storage disks. Wavelength and polarization dependent transmission is also demonstrated in the visible and infrared portions of the spectrum. The resonance wavelength of this filter can be tuned by simply changing the angle of incidence. Numerical calculations agree well with measurements. Our work can open up directions toward disposable optical components such as filters and polarizers. Morever, we investigate plasmonic force between two coupled metallic layers. We observe the mode splitting due to coupling between plasmonic surfaces by using finite difference time domain simulations.Item Open Access Fabrication, characterization and simulation of plasmonic cavities(2010) Karabıyık, MustafaSurface plasmon polaritons (SPPs) originate from the collective oscillations of conduction electrons coupled with photons propagating at metal-dielectric interfaces. A uniform metallic gratings change the dispersion (energy-momentum relation) of a flat metal surfaces due to the interaction of SPPs with the periodic structure. By breaking the symmetry of the periodic plasmonic structure, SPP cavities can be achieved and SPPs can be localized inside the cavity regions. The aim of this thesis is to understand the physics of phase shifted grating based plasmonic cavities. To this end, we fabricated uniform gratings and phase shifted gratings using electron beam lithography, and optically characterized these SPP structures with polarization dependent reflection spectroscopy. We verified experimental results with numerical simulations SPP propagation and localization on the grating structures. Dispersion curves of SPPs have been calculated by solving Maxwell’s wave equations using finite difference time domain method (FDTD) with appropriate boundary conditions in agreement with experimentally obtained data. We studied the dispersion curve as a function of grating profile modulation where we vary the ridge height and width of the ridges. We find that the plasmonic band gap width increases as the ridge height of the ridges in the grating increases. Optimum duty cycle of grating to observe plasmonic band gap is determined to be half of the grating period. Amount of the phase shift added to the periodicity of the uniform grating defines the energy of the cavity state, which is periodically related to the phase shift. A plasmonic cavity with a quality factor 80 has been achieved. The propagation mechanism of SPPs on coupled cavities is plasmon hopping from a given cavity to the next one.Item Open Access Grating based plasmonic cavities(2009) Şenlik, Servet SeçkinSurface plasmon polaritons are dipole carrying electromagnetic excitations occur- ing at metal-dielectric interfaces. Metallic periodic structures exhibit modi¯ed transmission and re°ection spectra owing to the interaction of propagating SPPs with the periodicity. These periodic surfaces are used to demonstrate localiza- tion of propagating SPPs. Thin metallic ¯lms surrounded by Bragg re°ectors, selective loading of biharmonic metallic surfaces and Moire patterns are used to demonstrate plasmonic cavity formation. The quality factor, Q, a characteristic value that indicates rate of energy loss relative to the stored energy in the cavity is a crucial parameter for classifying these cavities. It was proposed that the Q factor should strongly depend on the surface geometry. However, there was not a sytematic study on the Q factor of these cavity structures. In this work, we report on a comparative study of grating based plasmonic band gap cavities. Numerically, we calculate the quality factors of the cavities based on three types of grating surfaces; uniform, biharmonic and Moirµe surfaces. Experimentally, we demonstrate the existence of plasmonic cavities based on uniform gratings. E®ective index perturbation and cavity geometries are obtained by additional dielectric loading. Furthermore, we fabricate 2D plasmonic structures, observe plasmonic band gaps in the symetry axis and propose cavity geometries for this structure.Item Open Access Investigation of Si1-xGex alloy formation by using STM(1994) Oral, AhmetItem Open Access Novel techniques in multi-frequency atomic force microscopy and spectroscopy(2009) Abak, Musa KurtuluşThe capability of measuring material properties of nanostructures simultaneously with their size and shape is very desirable for characterization of novel materials and devices at the nanoscale Here we present two novel techniques for imaging and spectroscopy of mechanical and electrical properties of surface nanostructures simultaneously with topographic imaging. First we present a scanning probe technique that can be used to measure charging of localized states on conducting or partially insulating substrates at room temperature under ambient conditions. Electrostatic interactions in the presence of a charged particle between the tip and the sample is monitored by the second order flexural mode, while the fundamental mode is used for stabilizing the tip-sample separation. Cycling the bias voltage between two limits, it is possible to observe hysteresis of the second order mode amplitude due to charging. Results are presented on silicon nitride films containing silicon nanocrystals. Second we report use of nonlinear tip-sample interactions to convert the frequency components of periodic tip-sample interaction forces to frequencies where they can be resonantly detected by resonant heterodyne mixing. One flexural mode of a cantilever is used for tapping-mode imaging and another flexural mode is used for detection of forces converted in presence of an externally injected mechanical oscillation at the difference frequency of the detecting mode and a harmonic of the tapping mode. Material contrast in attractive and repulsive regimes are demonstrated on samples with polymethyl methacrylate patterns and with deoxyribonucleic acid strands on silicon. The techniques can be implemented using standard force microscopy systemsand cantilevers, which make them potentially useful to a greater scientific community.Item Open Access Plasmonic band gap cavities(2008) Kocabaş, AşkınSurface plasmon polaritons (SPP’s) are trapped electromagnetic waves coupled to free electrons in metals that propagate at the metal-dielectric interfaces. Due to their surface confinement and potential in sub-wavelength optics, SPP’s have been extensively studied for sensing and nanophotonic applications. Dielectric structures and metallic surfaces, both periodically modulated, can form photonic band gaps. Creating a defect cavity region in the periodicity of dielectrics allows specific optical modes to localize inside a cavity region. However, despite the demonstration of numerous plasmonic surfaces and unlike its dielectric counterparts, low index modulation in metallic surfaces limits the formation of plasmonic defect cavity structures. This thesis describes new approaches for plasmonic confinement in a cavity through the use of selective loading of grating structures as well as through the use of Moiré surfaces. In our first approach, we demonstrate that a high dielectric superstructure can perturb the optical properties of propagating SPPs dramatically and enable the formation of a plasmonic band gap cavity. Formation of the cavity is confirmed by the observation of a cavity mode in the band gap both in the infrared and the visible wavelengths. In addition to the confinement of SPP’s in the vertical direction, such a cavity localizes the SPP’s in their propagation direction. Additionally, we have demonstrated that such biharmonic grating structures can be used to enhance Raman scattering and photoluminescence (PL). Using biharmonic grating structure 105 times enhancement in Raman signal and 30 times enhancement in PL were measured. Furthermore, we show that metallic Moiré surfaces can also serve as a basis for plasmonic cavities with relatively high quality factors. We have demonstrated localization and slow propagation of surface plasmons on metallic Moiré surfaces. Phase shift at the node of the Moiré surface localizes the propagating surface plasmons in a cavity and adjacent nodes form weakly coupled plasmonic cavities. We demonstrate group velocities around v = 0.44c at the center of the coupled cavity band and almost zero group velocity at the band edges can be achieved. Furthermore, sinusoidally modified amplitude about the node suppresses the radiation losses and reveals a relatively high quality factor for plasmonic cavities.Item Open Access Probing interfacial processes on carbon nanotubes and graphene surfaces(2012) Kakenov, NurbekThe surface of low-dimensional carbon (carbon nanotubes and graphene) has unique electronic properties due to the delocalized p-orbitals. Very high carrier mobility with nanoscale dimension make carbon nanotubes and graphene promising candidates for high performance electronics. Besides electronic properties, the delocalized orbitals have a strong tendency to adsorb aromatic molecules via p-electronic interactions. The strong non-covalent interactions between the graphitic surface and organic molecules provide a unique template for supramolecular chemistry and sensing applications. A comprehensive understanding of these forces at atomic and molecular level still remains a challenge. In this thesis, we have used carbon nanotube networks and graphene as model systems to understand molecular interactions on carbon surface. We have developed processes to integrate these model materials with sensitive and surface specific sensors, such as surface plasmon sensor and quartz crystal microbalance. In the first part of the thesis, we integrated surface plasmon resonance (SPR) sensors with networks of single-walled carbon nanotubes to study interactions between SWNT and organic molecules. In the second part, we probe interfacial processes on graphene surface by mass detection. We anticipate that the developed methods could provide a sensitive means of detecting fundamental interaction on carbon surfaces.Item Open Access Subwavelength surface plasmon interferometer for high-throughput sensing(2012) Yavaş, ÖzlemSmall detection volume, increased analysis speed and reduced cost are the main driving forces for miniaturized lab-on-a-chip systems. Subwavelength holes on opaque metal films provide a unique configuration for miniaturized sensors. Transmitted light through these tiny holes is governed by the electronic resonance on the surface of the metal film. Excitation of surface plasmon-polaritons (SPPs) on the metal-dielectric interface characterizes the resonance condition. The sensitive dependence of the plasmon resonance condition on the dielectric constant of the medium is used for label free sensing applications. In this thesis, we demonstrate a refractive index sensor based on a subwavelength plasmon interferometer using monochromatic light. Very high contrast fringe pattern is generated by the plasmon interferometer that consists of a sub-wavelength slitgroove pair with a small angle between them. The small angle between the groove and the slit provides spatially varying slit-groove distance which generates a highcontrast interference pattern. By interrogating the relative position of interference fringes, one can determine the refractive index of the dielectric medium on the metal surface. The presented plasmon interferometer provides a practical yet sensitive refractive index measurement scheme with very small detection volume.