Plasmonic band gap cavities
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Surface plasmon polaritons (SPP’s) are trapped electromagnetic waves coupled to free electrons in metals that propagate at the metal-dielectric interfaces. Due to their surface confinement and potential in sub-wavelength optics, SPP’s have been extensively studied for sensing and nanophotonic applications. Dielectric structures and metallic surfaces, both periodically modulated, can form photonic band gaps. Creating a defect cavity region in the periodicity of dielectrics allows specific optical modes to localize inside a cavity region. However, despite the demonstration of numerous plasmonic surfaces and unlike its dielectric counterparts, low index modulation in metallic surfaces limits the formation of plasmonic defect cavity structures. This thesis describes new approaches for plasmonic confinement in a cavity through the use of selective loading of grating structures as well as through the use of Moiré surfaces. In our first approach, we demonstrate that a high dielectric superstructure can perturb the optical properties of propagating SPPs dramatically and enable the formation of a plasmonic band gap cavity. Formation of the cavity is confirmed by the observation of a cavity mode in the band gap both in the infrared and the visible wavelengths. In addition to the confinement of SPP’s in the vertical direction, such a cavity localizes the SPP’s in their propagation direction. Additionally, we have demonstrated that such biharmonic grating structures can be used to enhance Raman scattering and photoluminescence (PL). Using biharmonic grating structure 105 times enhancement in Raman signal and 30 times enhancement in PL were measured. Furthermore, we show that metallic Moiré surfaces can also serve as a basis for plasmonic cavities with relatively high quality factors. We have demonstrated localization and slow propagation of surface plasmons on metallic Moiré surfaces. Phase shift at the node of the Moiré surface localizes the propagating surface plasmons in a cavity and adjacent nodes form weakly coupled plasmonic cavities. We demonstrate group velocities around v = 0.44c at the center of the coupled cavity band and almost zero group velocity at the band edges can be achieved. Furthermore, sinusoidally modified amplitude about the node suppresses the radiation losses and reveals a relatively high quality factor for plasmonic cavities.