Browsing by Subject "Surface charge"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Glycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environment(American Chemical Society, 2016-02) Arslan, E.; Güler, Mustafa O.; Tekinay, A. B.Recent efforts in bioactive scaffold development focus strongly on the elucidation of complex cellular responses through the use of synthetic systems. Designing synthetic extracellular matrix (ECM) materials must be based on understanding of cellular behaviors upon interaction with natural and artificial scaffolds. Hence, due to their ability to mimic both the biochemical and mechanical properties of the native tissue environment, supramolecular assemblies of bioactive peptide nanostructures are especially promising for development of bioactive ECM-mimetic scaffolds. In this study, we used glycosaminoglycan (GAG) mimetic peptide nanofiber gel as a three-dimensional (3D) platform to investigate how cell lineage commitment is altered by external factors. We observed that amount of fetal bovine serum (FBS) presented in the cell media had synergistic effects on the ability of GAG-mimetic nanofiber gel to mediate the differentiation of mesenchymal stem cells into osteogenic and chondrogenic lineages. In particular, lower FBS concentration in the culture medium was observed to enhance osteogenic differentiation while higher amount FBS promotes chondrogenic differentiation in tandem with the effects of the GAG-mimetic 3D peptide nanofiber network, even in the absence of externally administered growth factors. We therefore demonstrate that mesenchymal stem cell differentiation can be specifically controlled by the combined influence of growth medium components and a 3D peptide nanofiber environment.Item Open Access Magnetic and electric Aharonov-Bohm effects in nanostructures(Elsevier BV, 1996) Kulik, I. O.The paper reviews and extends the magnetic Aharonov-Bohm effect (persistent current, resistance oscillation) in normal-metal rings including spin-independent and spin-dependent hopping, Zeeman splitting, magnetic textures and wheels, ring rotation and weak coupling, as well as the electric Aharonov-Bohm effect ("persistent charge") in small metallic contacts. We then discuss dynamical screening effects in a surface charge in a metal. Energy dissipation due to motion of the surface charge has a singularity at the velocity of motion equal to the phonon propagation velocity. Surface image of an external charge inside the metal is strongly distorted at the velocity of motion larger than the Fermi velocity.Item Open Access Molecular and continuum perspectives on intermediate and flow reversal regimes in electroosmotic transport(American Chemical Society, 2019) Çelebi, A. T.; Çetin, Barbaros; Beşkök, A.Electroosmotic slip flows in the Debye–Hückel regime were previously investigated using molecular dynamics and continuum transport perspectives ( J. Phys. Chem. C 2018, 122, 9699). This continuing work focuses on distinct electrostatic coupling regimes, where the variations in electroosmotic flows are elucidated based on Poisson–Fermi and Stokes equations and molecular dynamics simulations. In particular, aqueous NaCl solution in silicon nanochannels are considered under realistic electrochemical conditions, exhibiting intermediate flow and flow reversal regimes with increased surface charge density. Electroosmotic flow exhibits plug flow behavior in the bulk region for channel heights as small as 5 nm. With increased surface charge density, constant bulk electroosmotic flow velocity first increases and then it begins to gradually decrease until flow reversal is observed. In order to capture the flow physics and discrete motions within electric double layer accurately, the continuum model includes overscreening and crowding effects as well as slip contribution and local variations of enhanced viscosity. After extraction of the continuum parameters based on molecular dynamics simulations, good agreement between simulation results and continuum predictions are obtained for surface charges as large as −0.37 C/m2.Item Open Access Zeta potential: A surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells(Springer New York LLC, 2008) Zhang, Y.; Yang, M.; Portney, N. G.; Cui, D.; Budak, G.; Özbay, Ekmel; Ozkan, M.; Ozkan, C. S.We demonstrate the use of surface Zeta potential measurements as a new tool to investigate the interactions of iron oxide nanoparticles and cowpea mosaic virus (CPMV) nanoparticles with human normal breast epithelial cells (MCF10A) and cancer breast epithelial cells (MCF7) respectively. A substantial understanding in the interaction of nanoparticles with normal and cancer cells in vitro will enable the capabilities of improving diagnostic and treatment methods in cancer research, such as imaging and targeted drug delivery. A theoretical Zeta potential model is first established to show the effects of binding process and internalization process during the nanoparticle uptake by cells and the possible trends of Zeta potential change is predicted for different cell endocytosis capacities. The corresponding changes of total surface charge of cells in the form of Zeta potential measurements were then reported after incubated respectively with iron oxide nanoparticles and CPMV nanoparticles. As observed, after MCF7 and MCF10A cells were incubated respectively with two types of nanoparticles, the significant differences in their surface charge change indicate the potential role of Zeta potential as a valuable biological signature in studying the cellular interaction of nanoparticles, as well as specific cell functionality.