Browsing by Subject "Sugar (sucrose)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access High-stability, high-efficiency organic monoliths made of oligomer nanoparticles wrapped in organic matrix(American Chemical Society, 2016) Soran-Erdem Z.; Erdem, T.; Gungor K.; Pennakalathil, J.; Tuncel, D.; Demir, Hilmi VolkanOligomer nanoparticles (OL NPs) have been considered unsuitable for solid-state lighting due to their low quantum yields and low temperature stability of their emission. Here, we address these problems by forming highly emissive and stable OL NPs solids to make them applicable in lighting. For this purpose, we incorporated OL NPs into sucrose matrix and then prepared their all-organic monoliths. We show that wrapping the OL NPs in sucrose significantly increases their quantum yield up to 44%, while the efficiency of their dispersion and direct solid-film remain only at ∼6%. We further showed ∼3-fold improved temperature stability of OL NP emission within these monoliths. Our experiments revealed that a physical passivation mechanism is responsible from these improvements. As a proof-of-concept demonstration, we successfully employed these high-stability, high-efficiency monoliths as color converters on a blue LED chip. Considering the improved optical features, low cost, and simplicity of the presented methodology, we believe that this study holds great promise for a ubiquitous use of organic OL NPs in lighting and possibly in other photonic applications.Item Open Access Use of saccharides as solid-state precursors for the synthesis of carbon nanotubes(Materials Research Society, 2008) Küçükkayan, Gökçe; Kayacan, Serim; Baykal, Beril; Bengu, ErmanSaccharides, ranging from simple table sugar (sucrose) to lactulose were successfully used as solid-state precursors for the synthesis of multi-walled carbon nanotubes (MWCNT). Dehydrated saccharide residues mixed with catalyst powders were subjected to pyrolysis at high temperatures (up to 1300°C) under flowing Argon atmosphere. Pyrolysis products were investigated using TEM, SEM, Raman spectroscopy and EDS. Images taken using the S/TEM and bright field mode of TEM showed the presence of helical multi-walled carbon nanotube (H-MWCNT) and regular MWCNT formation. More than two or three catalyst particles were observed to be present inside the hollow core of some of the nanotubes synthesized, suggesting a high level of capillary activity inside the tubes during synthesis. © 2008 Materials Research Society.