Browsing by Subject "Structured total least squares"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Compressive sampling and adaptive multipath estimation(IEEE, 2010) Pilancı, Mert; Arıkan, OrhanIn many signal processing problems such as channel estimation and equalization, the problem reduces to a linear system of equations. In this proceeding we formulate and investigate linear equations systems with sparse perturbations on the coefficient matrix. In a large class of matrices, it is possible to recover the unknowns exactly even if all the data, including the coefficient matrix and observation vector is corrupted. For this aim, we propose an optimization problem and derive its convex relaxation. The numerical results agree with the previous theoretical findings of the authors. The technique is applied to adaptive multipath estimation in cognitive radios and a significant performance improvement is obtained. The fact that rapidly varying channels are sparse in delay and doppler domain enables our technique to maintain reliable communication even far from the channel training intervals. ©2010 IEEE.Item Open Access Recovery of sparse perturbations in Least Squares problems(IEEE, 2011) Pilanci, M.; Arıkan, OrhanWe show that the exact recovery of sparse perturbations on the coefficient matrix in overdetermined Least Squares problems is possible for a large class of perturbation structures. The well established theory of Compressed Sensing enables us to prove that if the perturbation structure is sufficiently incoherent, then exact or stable recovery can be achieved using linear programming. We derive sufficiency conditions for both exact and stable recovery using known results of ℓ 0/ℓ 1 equivalence. However the problem turns out to be more complicated than the usual setting used in various sparse reconstruction problems. We propose and solve an optimization criterion and its convex relaxation to recover the perturbation and the solution to the Least Squares problem simultaneously. Then we demonstrate with numerical examples that the proposed method is able to recover the perturbation and the unknown exactly with high probability. The performance of the proposed technique is compared in blind identification of sparse multipath channels. © 2011 IEEE.Item Open Access Structured least squares problems and robust estimators(IEEE, 2010-10-22) Pilanci, M.; Arıkan, Orhan; Pinar, M. C.A novel approach is proposed to provide robust and accurate estimates for linear regression problems when both the measurement vector and the coefficient matrix are structured and subject to errors or uncertainty. A new analytic formulation is developed in terms of the gradient flow of the residual norm to analyze and provide estimates to the regression. The presented analysis enables us to establish theoretical performance guarantees to compare with existing methods and also offers a criterion to choose the regularization parameter autonomously. Theoretical results and simulations in applications such as blind identification, multiple frequency estimation and deconvolution show that the proposed technique outperforms alternative methods in mean-squared error for a significant range of signal-to-noise ratio values.Item Open Access Structured least squares with bounded data uncertainties(IEEE, 2009) Pilanci, Mert; Arıkan, Orhan; Oguz, B.; Pınar, Mustafa C.In many signal processing applications the core problem reduces to a linear system of equations. Coefficient matrix uncertainties create a significant challenge in obtaining reliable solutions. In this paper, we present a novel formulation for solving a system of noise contaminated linear equations while preserving the structure of the coefficient matrix. The proposed method has advantages over the known Structured Total Least Squares (STLS) techniques in utilizing additional information about the uncertainties and robustness in ill-posed problems. Numerical comparisons are given to illustrate these advantages in two applications: signal restoration problem with an uncertain model and frequency estimation of multiple sinusoids embedded in white noise.