Compressive sampling and adaptive multipath estimation
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In many signal processing problems such as channel estimation and equalization, the problem reduces to a linear system of equations. In this proceeding we formulate and investigate linear equations systems with sparse perturbations on the coefficient matrix. In a large class of matrices, it is possible to recover the unknowns exactly even if all the data, including the coefficient matrix and observation vector is corrupted. For this aim, we propose an optimization problem and derive its convex relaxation. The numerical results agree with the previous theoretical findings of the authors. The technique is applied to adaptive multipath estimation in cognitive radios and a significant performance improvement is obtained. The fact that rapidly varying channels are sparse in delay and doppler domain enables our technique to maintain reliable communication even far from the channel training intervals. ©2010 IEEE.