Browsing by Subject "Stem cells"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access A glycosaminoglycan mimetic peptide nanofiber gel as an osteoinductive scaffold(Royal Society of Chemistry, 2016) Tansik, G.; Kilic, E.; Beter, M.; Demiralp, B.; K.Sendur, G.; Can, N.; Ozkan, H.; Ergul, E.; Güler, Mustafa O.; Tekinay, A. B.Biomineralization of the extracellular matrix (ECM) plays a crucial role in bone formation. Functional and structural biomimetic native bone ECM components can therefore be used to change the fate of stem cells and induce bone regeneration and mineralization. Glycosaminoglycan (GAG) mimetic peptide nanofibers can interact with several growth factors. These nanostructures are capable of enhancing the osteogenic activity and mineral deposition of osteoblastic cells, which is indicative of their potential application in bone tissue regeneration. In this study, we investigated the potential of GAG-mimetic peptide nanofibers to promote the osteogenic differentiation of rat mesenchymal stem cells (rMSCs) in vitro and enhance the bone regeneration and biomineralization process in vivo in a rabbit tibial bone defect model. Alkaline phosphatase (ALP) activity and Alizarin red staining results suggested that osteogenic differentiation is enhanced when rMSCs are cultured on GAG-mimetic peptide nanofibers. Moreover, osteogenic marker genes were shown to be upregulated in the presence of the peptide nanofiber system. Histological and micro-computed tomography (Micro-CT) observations of regenerated bone defects in rabbit tibia bone also suggested that the injection of a GAG-mimetic nanofiber gel supports cortical bone deposition by enhancing the secretion of an inorganic mineral matrix. The volume of the repaired cortical bone was higher in GAG-PA gel injected animals. The overall results indicate that GAG-mimetic peptide nanofibers can be utilized effectively as a new bioactive platform for bone regeneration. © 2016 The Royal Society of Chemistry.Item Open Access Glycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environment(American Chemical Society, 2016-02) Arslan, E.; Güler, Mustafa O.; Tekinay, A. B.Recent efforts in bioactive scaffold development focus strongly on the elucidation of complex cellular responses through the use of synthetic systems. Designing synthetic extracellular matrix (ECM) materials must be based on understanding of cellular behaviors upon interaction with natural and artificial scaffolds. Hence, due to their ability to mimic both the biochemical and mechanical properties of the native tissue environment, supramolecular assemblies of bioactive peptide nanostructures are especially promising for development of bioactive ECM-mimetic scaffolds. In this study, we used glycosaminoglycan (GAG) mimetic peptide nanofiber gel as a three-dimensional (3D) platform to investigate how cell lineage commitment is altered by external factors. We observed that amount of fetal bovine serum (FBS) presented in the cell media had synergistic effects on the ability of GAG-mimetic nanofiber gel to mediate the differentiation of mesenchymal stem cells into osteogenic and chondrogenic lineages. In particular, lower FBS concentration in the culture medium was observed to enhance osteogenic differentiation while higher amount FBS promotes chondrogenic differentiation in tandem with the effects of the GAG-mimetic 3D peptide nanofiber network, even in the absence of externally administered growth factors. We therefore demonstrate that mesenchymal stem cell differentiation can be specifically controlled by the combined influence of growth medium components and a 3D peptide nanofiber environment.Item Open Access Nanomaterials for the repair and regeneration of dental tissues(John Wiley & Sons, 2016-03-11) Tansık, Gülistan; Özkan, Alper Devrim; Güler, Mustafa O.; Tekinay, Ayşe B.; Güler, Mustafa O.; Tekinay, Ayşe B.This chapter details the recent advances concerning the use of scaffolds and nanomaterials in the field of artificial tooth regeneration. Primary osseointegration is the mechanical attachment of an implant to the surrounding bone following its insertion, while secondary osseointe‐gration (biological stability) involves bone regeneration and remodeling around the implant. Various methods exist for the fabrication of materials with nanometer‐scale roughnesses; grit blasting, ionization, and acid etching are among the more common. Dental implants have also begun to use similar methods to increase surface roughness and promote protein adsorption and cell adhesion. In addition, biomimetic calcium phosphate coatings and growth factor‐releasing scaffolds are also under development for bone and tooth regeneration. The formation of complete replacement teeth would be of great utility in regenerative dentistry. Adipose‐derived stem cells have been suggested as alternate cell sources for the regeneration of teeth.Item Open Access Presentation of functional groups on self-assembled supramolecular peptide nanofibers mimicking glycosaminoglycans for directed mesenchymal stem cell differentiation(Royal Society of Chemistry, 2017) Yasa, Oncay; Uysal, Ozge; Ekiz, Melis Sardan; Güler, Mustafa O.; Tekinay, Ayse B.Organizational complexity and functional diversity of the extracellular matrix regulate cellular behaviors. The extracellular matrix is composed of various proteins in the form of proteoglycans, glycoproteins, and nanofibers whose types and combinations change depending on the tissue type. Proteoglycans, which are proteins that are covalently attached to glycosaminoglycans, contribute to the complexity of the microenvironment of the cells. The sulfation degree of the glycosaminoglycans is an important and distinct feature at specific developmental stages and tissue types. Peptide amphiphile nanofibers can mimic natural glycosaminoglycans and/or proteoglycans, and they form a synthetic nanofibrous microenvironment where cells can proliferate and differentiate towards different lineages. In this study, peptide nanofibers were used to provide varying degrees of sulfonation mimicking the natural glycosaminoglycans by forming a microenvironment for the survival and differentiation of stem cells. The effects of glucose, carboxylate, and sulfonate groups on the peptide nanofibers were investigated by considering the changes in the differentiation profiles of rat mesenchymal stem cells in the absence of any specific differentiation inducers in the culture medium. The results showed that a higher sulfonate-to-glucose ratio is associated with adipogenic differentiation and a higher carboxylate-to-glucose ratio is associated with osteochondrogenic differentiation of the rat mesenchymal stem cells. Overall, these results demonstrate that supramolecular peptide nanosystems can be used to understand the fine-tunings of the extracellular matrix such as sulfation profile on specific cell types. © 2017 The Royal Society of Chemistry.Item Open Access Supramolecular GAG-like self-assembled glycopeptide nanofibers Induce chondrogenesis and cartilage regeneration(American Chemical Society, 2016) Yaylaci, U. S.; Ekiz, M. S.; Arslan, E.; Can, N.; Kilic, E.; Ozkan, H.; Orujalipoor, I.; Ide, S.; Tekinay, A. B.; Güler, Mustafa O.Glycosaminoglycans (GAGs) and glycoproteins are vital components of the extracellular matrix, directing cell proliferation, differentiation, and migration and tissue homeostasis. Here, we demonstrate supramolecular GAG-like glycopeptide nanofibers mimicking bioactive functions of natural hyaluronic acid molecules. Self-assembly of the glycopeptide amphiphile molecules enable organization of glucose residues in close proximity on a nanoscale structure forming a supramolecular GAG-like system. Our in vitro culture results indicated that the glycopeptide nanofibers are recognized through CD44 receptors, and promote chondrogenic differentiation of mesenchymal stem cells. We analyzed the bioactivity of GAG-like glycopeptide nanofibers in chondrogenic differentiation and injury models because hyaluronic acid is a major component of articular cartilage. Capacity of glycopeptide nanofibers on in vivo cartilage regeneration was demonstrated in microfracture treated osteochondral defect healing. The glycopeptide nanofibers act as a cell-instructive synthetic counterpart of hyaluronic acid, and they can be used in stem cell-based cartilage regeneration therapies.Item Open Access Supramolecular peptide nanofiber morphology affects mechanotransduction of stem cells(American Chemical Society, 2017-08) Arslan, Elif; Koc,, Meryem Hatip; Uysal, Ozge; Dikecoglu, Begum; Topal, Ahmet E.; Garifullin, Ruslan; Ozkan, Alper D.; Dana, A.; Hermida-Merino, D.; Castelletto, V.; Edwards-Gayle, C.; Baday, S.; Hamley, I.; Tekinay, Ayse B.; Güler, Mustafa O.Chirality and morphology are essential factors for protein function and interactions with other biomacromolecules. Extracellular matrix (ECM) proteins are also similar to other proteins in this sense; however, the complexity of the natural ECM makes it difficult to study these factors at the cellular level. The synthetic peptide nanomaterials harbor great promise in mimicking specific ECM molecules as model systems. In this work, we demonstrate that mechanosensory responses of stem cells are directly regulated by the chirality and morphology of ECM-mimetic peptide nanofibers with strictly controlled characteristics. Structural signals presented on l-amino acid containing cylindrical nanofibers (l-VV) favored the formation of integrin β1-based focal adhesion complexes, which increased the osteogenic potential of stem cells through the activation of nuclear YAP. On the other hand, twisted ribbon-like nanofibers (l-FF and d-FF) guided the cells into round shapes and decreased the formation of focal adhesion complexes, which resulted in the confinement of YAP proteins in the cytosol and a corresponding decrease in osteogenic potential. Interestingly, the d-form of twisted-ribbon like nanofibers (d-FF) increased the chondrogenic potential of stem cells more than their l-form (l-FF). Our results provide new insights into the importance and relevance of morphology and chirality of nanomaterials in their interactions with cells and reveal that precise control over the chemical and physical properties of nanostructures can affect stem cell fate even without the incorporation of specific epitopes.Item Open Access Wavelet merged multi-resolution super-pixels and their applications on fluorescent MSC images(IEEE, 2015) Yorulmaz, Onur; Oğuz, Oğuzhan; Akhan, Ece; Tuncel, Dönüş; Atalay, R. Ç.; Çetin, A. EnisA new multi-resolution super-pixel based algorithm is proposed to track cell size, count and motion in Mesenchymal Stem Cells (MSCs) images. Multi-resolution super-pixels are obtained by placing varying density seeds on the image. The density of the seeds are determined according to the local high frequency components of the MSCs image. In this way a multi-resolution super-pixels decomposition of the image is obtained. A second contribution of the paper is novel decision rule for merging similar neighboring super-pixels. An algorithm based on well known wavelet decomposition is developed and applied to the histograms of neighboring super pixels to exploit similarity. The proposed algorithm is experimentally shown to be successful in segmenting and tracking cells in MSCs images.