Browsing by Subject "Square waves"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Analysis of Fe nanoparticles using XPS measurements under d.c. or pulsed-voltage bias(2010) Süzer, Şefik; Baer, D. R.; Engelhard, M. H.The impact of solution exposure on the charging properties of oxide coatings on Fe metal-core oxide-shell nanoparticles has been examined by sample biasing during XPS measurements. The Fe nanoparticles were suspended in relatively unreactive acetone and analyzed after particles containing solutions were deposited on SiO2/Si or Au substrates. The particle and substrate combinations were subjected to ±10V d.c. or ±5V a.c., biasing in the form of square wave (SQW) pulses. The samples experienced variable degrees of charging for which low-energy electrons at ∼1eV, 20 μA and low-energy Ar+ ions were used to minimize it. Application of d.c. bias and/or SQW pulses significantly influences the extent of charging, which is utilized to gather additional analytical information about the sample under investigation. This approach allows separation of otherwise overlapping peaks. Accordingly, the O1s peaks of the silicon oxide substrate, the iron oxide nanoparticles, and that of the casting solvent can be separated from each other. Similarly, the C1s peak belonging to the solvent can be separated from that of the adventitious carbon. The charging shifts of the iron nanoparticles are strongly influenced by the solvent to which the particles were exposed. Hence, acetone exhibited the largest shift, water the smallest, and methanol in between. Dynamical measurements performed by application of the voltage stress in the form of SQW pulses provides information about the time constants of the processes involved, which leads us to postulate that these charging properties we probe in these systems stem mainly from ionic movement(s).Item Open Access Dynamical XPS measurements for probing photoinduced voltage changes(2010) Sezen, H.; Süzer, ŞefikPhotoillumination with 405 nm laser causes shifts in XPS peaks of n-Si(100), and CdS. To distinguish between surface photovoltage (SPV), and charging, dynamical measurements are performed, while sample is subjected to square wave pulses of ± 10.00 V amplitude, and 10-3-10 5 Hz frequency. For n-Si, Si2p peaks are twinned at + 10.00 and -10.00, yielding always 20.00 eV difference. Photoillumination shifts the twinned peaks to higher energies, but the difference is always 20.00 eV. However, for CdS, the measured binding difference of Cd3d peaks exhibits strong frequency dependence due to charging, which indicates that both fast SPV and slow charging effects are operative.Item Open Access Lineshapes, shifts and broadenings in dynamical X-ray photoelectron spectroscopy(2009) Dâna, A.We describe in detail a model that can be used to estimate the X-ray photoelectron spectroscopic data of surfaces when a time varying bias or a modulation of the electrical properties of the surface is applied by external stimulation, in the presence of a neutralizing electron beam. Using the model and spectra recorded under periodic sample bias modulation, certain electronic properties related to charging dynamics of the surface can be estimated. The resulting technique is a non-contact impedance measurement technique with chemical specificity. Typical behavior of spectra under a square wave bias is given. Alternative modulation schemes are investigated, including small-signal square wave modulation, sinusoidal modulation and modulation of sample resistivity under fixed bias. © 2009 Elsevier B.V. All rights reserved.