Browsing by Subject "Split ring resonator"
Now showing 1 - 20 of 28
- Results Per Page
- Sort Options
Item Open Access Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators(Optical Society of America, 2011-04-28) Mutlu, M.; Akosman, A. E.; Serebryannikov, A. E.; Özbay, EkmelAn asymmetric chiral metamaterial structure is constructed by using four double-layered U-shaped split ring resonators, which are each rotated by 90° with respect to their neighbors. The peculiarity of the suggested design is that the sizes of the electrically and magnetically excited rings are different, which allows for equalizing the orthogonal components of the electric field at the output interface with a 90° phase difference when the periodic structure is illuminated by an x-polarized wave. As a result, left-hand circular polarization and right-hand circular polarization are obtained in transmission at 5:1 GHz and 6:4 GHz, respectively. The experiment results are in good agreement with the numerical results.Item Open Access Chiral metamaterials with negative refractive index based on four "U" split ring resonators(American Institute of Physics, 2010-08-23) Li, Z.; Zhao, R.; Koschny, T.; Kafesaki, M.; Alici, K. B.; Colak, E.; Caglayan, H.; Özbay, Ekmel; Soukoulis, C. M.A uniaxial chiral metamaterial is constructed by double-layered four "U" split ring resonators mutually twisted by 90°. It shows a giant optical activity and circular dichroism. The retrieval results reveal that a negative refractive index is realized for circularly polarized waves due to the large chirality. The experimental results are in good agreement with the numerical results.Item Open Access Coupling enhancement of split ring resonators on graphene(Pergamon Press, 2014-12) Cakmakyapan, S.; Caglayan, H.; Özbay, EkmelMetallic split ring resonator (SRR) structures are used in nanophotonics applications in order to localize and enhance incident electromagnetic field. Electrically controllable sheet carrier concentration of graphene provides a platform where the resonance of the SRRs fabricated on graphene can be tuned. The reflectivity spectra of SRR arrays shift by applying gate voltage, which modulates the sheet carrier concentration, and thereby the optical conductivity of monolayer graphene. We experimentally and numerically demonstrated that the tuning range can be increased by tailoring the effective mode area of the SRR and enhancing the interaction with graphene. The tuning capability is one of the important features of graphene based tunable sensors, optical switches, and modulator applications. © 2014 Elsevier Ltd. All rights reserved.Item Open Access Development of left-handed composite materials and negative refracting photonic crystals with subwavelength focusing(SPIE, 2005) Özbay, EkmelWe review the studies conducted in our group concerning electromagnetic properties of metamaterials and photonic crystals with negative effective index of refraction. In particular, we demonstate the true left handed behavior of a 2D composite metamaterial, by analyzing the electric and magnetic response of the material components systematically. The negative refraction, subwavelength focusing, and flat lens phenomena using 2D dielectric photonic crystals are also presented.Item Open Access An electromagnetic sensing system incorporating multiple probes and single antenna for wireless structural health monitoring(IEEE, 2017) Özbey, Burak; Altıntaş, Ayhan; Demir, Hilmi Volkan; Ertürk, Vakur B.; Kurç, Ö.In this study, a wireless and passive displacement/strain sensing system is proposed for structural health monitoring (SHM). The wireless and passive interrogation of the sensing unit [a variant of a nested split-ring resonator (NSRR)] is achieved through the near-field interaction and electromagnetic coupling between the single antenna in the system and the multiple sensors called the NSRR probes. It is demonstrated that the system can acquire data from more than one NSRR probe simultaneously in a real-life scenario, where the probes are confined within concrete inside a beam, while the antenna monitors them from outside.Item Open Access EU NoE metamorphose: Metamaterials research activities(SPIE, 2005) Özbay, EkmelWe will present the activities of METAMORPHOSE a network of excellence (NoE) formed under EU-FP6 on the area of metamaterials. The main scientific objective of the partners of this consortium is to develop new types of artificial materials, referred to below as metamaterials, with electromagnetic properties that cannot be found among natural materials. The results of this development should lead to a conceptually new range of radio, microwave, and optical technologies, based on revolutionary new materials made by large-scale assembly of some basic elements (nanoscopic and microscopic) in unprecedented combinations. Further information on this NoE can be found in http://www.metamaterials-eu.org.Item Open Access Experimental analysis of true left-handed behaviour and transmission properties of composite metamaterials(Elsevier, 2005-12) Güven, Kaan; Aydın, Koray; Özbay, EkmelWe report the true left-handed transmission of a composite metamaterial (CMM) consisting of periodically stacked split-ring resonator (SRR) and wire elements. The negative permeability (μ < 0) gap is demonstrated explicitly by comparing SRR and closed-ring resonator structures. We confirm experimentally that the plasma cut-off frequency of the CMM is determined by the combined dielectric response of SRR and wire elements, and it is much lower than that of the wire-only medium. This is crucial to identify the left-handed transmission bands of the CMM. We further investigate the effect of intralayer and interlayer disorder on the transmission spectrum of CMM arising from misaligned fabrication and stacking of the SRR layers. We found that the intralayer disorder affects the μ < 0 gap of SRRs and the left-handed transmission band of CMM significantly, whereas the SRR transmission is rather immune to interlayer disorder.Item Open Access Experimental demonstration of sub-wavelength imaging by left handed metamaterials(SPIE, 2007) Özbay, EkmelWe review the studies conducted in our group concerning electromagnetic properties of metamaterials and photonic crystals with negative effective index of refraction. In particular, we demonstate the true left handed behavior of a 2D composite metamaterial, by analyzing the electric and magnetic response of the material components systematically. The negative refraction, subwavelength focusing, and flat lens phenomena using left handed metamaterials and photonic crystals are also presented.Item Open Access Experimental investigation of reflection characteristics of left-handed metamaterials in free space(The Institution of Engineering and Technology, 2007) Aydin, K.; Özbay, EkmelThe transmission and reflection characteristics are presented of a one-dimensional (1D) left-handed metamaterial (LHM) and its constituents, split ring resonator and thin wire arrays. A well-defined left-handed transmission band with a peak value of -7.2 dB is obtained at frequencies where effective permittivity and permeability are both negative. A sharp dip (-34.5 dB) at the reflection spectrum of 1D ordered LHM is observed. The frequency of ultra-low reflection did not change considerably for another LHM with a different thickness, meaning that the low reflection is not because of the thickness resonance but rather the impedance-matching of LHM at the surface. Disorder in LHM structures is shown to affect the reflection characteristics.Item Open Access Flexible metamaterials for wireless strain sensing(American Institute of Physics, 2009-11-04) Melik, R.; Unal, E.; Perkgoz, N. K.; Puttlitz, C.; Demir, Hilmi VolkanWe proposed and demonstrated flexible metamaterial-based wireless strain sensors that include arrays of split ring resonators (SRRs) to telemetrically measure strain. For these metamaterial sensors, we showed that a flexible substrate (e.g., Kapton tape) delivers greater sensitivity and a more linear response as compared to using silicon substrates. Specifically, these tape-based flexible SRR sensors exhibit a significantly improved sensitivity level of 0.292 MHz/kgf with a substantially reduced nonlinearity error of 3% for externally applied mechanical loads up to 250 kgf. These data represent a sixfold increase in sensitivity and a 16-fold reduction in error percentage.Item Open Access Identifying magnetic response of split-ring resonators at microwave frequencies(Sciendo, 2006) Aydin, K.; Özbay, EkmelIn this study we provide experimental methods to identify the magnetic resonance of split ring resonators (SRR) at the microwave frequency regime. Transmission measurements were performed on both single SRR unit cell and periodic arrays of SRRs. The magnetic response of the SRR structure was demonstrated by comparing the transmission spectra of SRRs with closed ring resonators (CRR Effects of the changes in the effective dielectric constant of the SRR medium on the band-gaps of SRR are investigated experimentally. SRRs not only exhibit a magnetic resonance band gap but also a band gap due to the electric resonance. Finally, we present the effect of electric coupling to the magnetic resonance of bianisotropic SRRs by utilizing SRRs with different orientations, and incident electromagnetic wave polarizations.Item Open Access Metamaterial Absorber Based Multifunctional Sensor Application(Institute of Physics Publishing, 2017) Ozer Z.; Mamedov, Amirullah; Özbay, EkmelIn this study metamaterial based (MA) absorber sensor, integrated with an X-band waveguide, is numerically and experimentally suggested for important application including pressure, density sensing and marble type detecting applications based on rectangular split ring resonator, sensor layer and absorber layer that measures of changing in the dielectric constant and/or the thickness of a sensor layer. Changing of physical, chemical or biological parameters in the sensor layer can be detected by measuring the resonant frequency shifting of metamaterial absorber based sensor. Suggested MA based absorber sensor can be used for medical, biological, agricultural and chemical detecting applications in microwave frequency band. We compare the simulation and experimentally obtained results from the fabricated sample which are good agreement. Simulation results show that the proposed structure can detect the changing of the refractive indexes of different materials via special resonance frequencies, thus it could be said that the MA-based sensors have high sensitivity. Additionally due to the simple and tiny structures it could be adapted to other electronic devices in different sizes. © Published under licence by IOP Publishing Ltd.Item Open Access Metamaterial-based wireless RF-MEMS strain sensors(IEEE, 2010) Melik, Rohat; Ünal, Emre; Perkgoz, Nihan Kosku; Puttlitz, C.; Demir, Hilmi VolkanApproximately 10% of the fractures do not heal properly because of the inability to monitor fracture healing. Standard radiography is not capable of discriminating whether bone healing is occurring normally or aberrantly. We propose and develop an implantable wireless sensor that monitors strain on implanted hardware in real time telemetrically. This enables clinicians to monitor fracture healing. Here we present the development and demonstration of metamaterial-based radiofrequency (RF) micro-electro-mechanical system (MEMS) strain sensors for wireless strain sensing to monitor fracture healing. The operating frequency of these sensors shifts under mechanical loading; this shift is related to the surface strain of the implantable test material. In this work, we implemented metamaterials in two different architectures as bio-implantable wireless strain sensors for the first time. These custom-design metamaterials exhibit better performance as sensors than traditional RF structures (e.g., spiral coils) because of their unique structural properties (splits). They feature a low enough operating frequency to avoid the background absorption of soft tissue and yield higher Q-factors compared to the spiral structures (because their gaps have much higher electric field density). In our first metamaterial architecture of an 5x5 array, the wireless sensor shows high sensitivity (109kHz/kgf, 5.148kHz/microstrain) with low nonlinearity-error (<200microstrain). Using our second architecture, we then improved the structure of classical metamaterial and obtained nested metamaterials that incorporate multiple metamaterials in a compact nested structure and measured strain telemetrically at low operating frequencies. This novel nested metamaterial structure outperformed classical metamaterial structure as wireless strain sensors. By employing nested metamaterial architecture, the operating frequency is reduced from 529.8 MHz to 506.2 MHz while the sensitivity is increased from 0.72 kHz/kgf to 1.09 kHz/kgf. ©2010 IEEE.Item Open Access Metamaterial-based wireless strain sensors(American Institute of Physics, 2009-07-07) Melik, R.; Unal, E.; Perkgoz, N. K.; Puttlitz, C.; Demir, Hilmi VolkanWe proposed and demonstrated metamaterial-based strain sensors that are highly sensitive to mechanical deformation. Their resonance frequency shift is correlated with the surface strain of our test material and the strain data are reported telemetrically. These metamaterial sensors are better than traditional radio-frequency (rf) structures in sensing for providing resonances with high quality factors and large transmission dips. Using split ring resonators (SRRs), we achieve lower resonance frequencies per unit area compared to other rf structures, allowing for bioimplant sensing in soft tissue (e.g., fracture healing). In 5×5 SRR architecture, our wireless sensors yield high sensitivity (109 kHz/kgf, or 5.148 kHz/microstrain) with low nonlinearity error (<200 microstrain).Item Open Access Near-field light localization using subwavelength apertures incorporated with metamaterials(Elsevier, 2012-03-12) Ates, D.; Cakmak, A. O.; Özbay, EkmelWe report strong near-field electromagnetic localization by using subwavelength apertures and metamaterials that operate at microwave frequencies. We designed split ring resonators with distinct configurations in order to obtain extraordinary transmission results. Furthermore, we analyzed the field localization and focusing characteristics of the transmitted evanescent waves. The employed metamaterial configurations yielded an improvement on the transmission efficiency on the order of 27 dB and 50 dB for the deep subwavelength apertures. The metamaterial loaded apertures are considered as a total system that offered spot size conversion ratios as high as 7.12 and 9.11 for the corresponding metamaterial configurations. The proposed system is shown to intensify the electric fields of the source located in the near-field. It also narrows down the electromagnetic waves such that a full width at half maximum value of λ/29 is obtained.Item Open Access Nested metamaterials for wireless strain sensing(IEEE, 2009-12-28) Melik, R.; Unal, E.; Perkgoz, N. K.; Santoni, B.; Kamstock, D.; Puttlitz, C.; Demir, Hilmi VolkanWe designed, fabricated, and characterized metamaterial-based RF-microelectromechanical system (RF-MEMS) strain sensors that incorporate multiple split ring resonators (SRRs) in a compact nested architecture to measure strain telemetrically. We also showed biocompatibility of these strain sensors in an animal model. With these devices, our bioimplantable wireless metamaterial sensors are intended, to enable clinicians, to quantitatively evaluate the progression of long-bone fracture healing by monitoring the strain on the implantable fracture fixation hardware in real time. In operation, the transmission spectrum of the metamaterial sensor attached to the implantable fixture is changed when an external load is applied to the fixture, and from this change, the strain is recorded remotely. By employing telemetric characterizations, we reduced the operating frequency and enhanced the sensitivity of our novel nested SRR architecture compared to the conventional SRR structure. The nested SRR structure exhibited a higher sensitivity of 1.09 kHz/kgf operating at lower frequency compared to the classical SRR that demonstrated a sensitivity of 0.72 kHz/kgf. Using soft tissue medium, we achieved the best sensitivity level of 4.00 kHz/kgf with our nested SRR sensor. Ultimately, the laboratory characterization and in vivo biocompatibility studies support further development and characterization of a fracture healing system based on implantable nested SRR.Item Open Access Novel optical antenna designs of comb shaped split ring architecture for NIR and MIR enhanced field localization(IEEE, 2014) Kılıç, Veli Tayfun; Ertürk, Vakur B.; Demir, Hilmi VolkanWe demonstrated NIR/MIR resonance behavior in optical antennas of comb-shaped split-ring resonators enabling substantially larger field enhancements than single/array of dipoles with the same side length, despite their simple architecture.Item Open Access Observation of defect formation in metamaterials(OSA, 2008-10) Çağlayan, Hümeyra; Bulu, I.; Loncar, M.; Özbay, EkmelWe report subwavelength localization of electromagnetic fields within cavities based on metamaterials. Cavity resonances are observed in the transmission spectrum of a split ring resonator and composite metamaterials cavity structures. These cavity resonances are shown to exhibit high quality factors. Since the unit cells of metamaterials are much smaller than the operation wavelength, subwavelength localization is possible within these metamaterial cavity structures. In the present paper, we show that the electromagnetic field is localized into a region of λ/8, where λ is the cavity resonance wavelength.Item Open Access Observation of negative refraction and negative phase velocity in true left-handed metamaterials(IEEE, 2007) Özbay, Ekmel; Soukoulis, C.M.We report a true left-handed (LH) behavior in a composite metamaterial consisting of periodically arranged split ring resonator (SRR) and wire structures. The magnetic resonance of the SRR structure is demonstrated by comparing the transmission spectra of SRRs with that of closed SRRs. We confirmed experimentally that the effective plasma frequency of the LH material composed of SRRs and wires is lower than the plasma frequency of the wires. A well-defined left-handed transmission band with a peak value of -1.2 dB (-0.3 dB/cm) is obtained. We also report the transmission characteristics of a 2D composite metamaterial (CMM) structure in free space. At the frequencies where left-handed transmission takes place, we experimentally confirmed that the CMM structure has effective negative refractive index. Phase shift between consecutive numbers of layers of CMM is measured and phase velocity is shown to be negative at the relevant frequency range. Refractive index values obtained from the refraction experiments and the phase measurements are in good agreement. The experimental results agree extremely well with the theoretical calculations. © 2006 EuMA.Item Open Access Observation of negative refraction and negative phase velocity in true left-handed metamaterials(SPIE, 2005) Özbay, EkmelWe report a true left-handed (LH) behavior in a composite metamaterial consisting of periodically arranged split ring resonator (SRR) and wire structures. The magnetic resonance of the SRR structure is demonstrated by comparing the transmission spectra of SRRs with that of closed SRRs. We confirmed experimentally that the effective plasma frequency of the LH material composed of SRRs and wires is lower than the plasma frequency of the wires. A well-defined left-handed transmission band with a peak value of -1.2 dB (-0.3 dB/cm) is obtained. We also report the transmission characteristics of a 2D composite metamaterial (CMM) structure in free space. At the frequencies where left-handed transmission takes place, we experimentally confirmed that the CMM structure has effective negative refractive index. Phase shift between consecutive numbers of layers of CMM is measured and phase velocity is shown to be negative at the relevant frequency range. Refractive index values obtained from the refraction experiments and the phase measurements are in good agreement. The experimental results agree extremely well with the theoretical calculations.