Browsing by Subject "Spectroscopy"
Now showing 1 - 20 of 33
- Results Per Page
- Sort Options
Item Open Access Adsorption behavior of radionuclides, 137Cs and 140Ba, onto solid humic acid(Springer, 2011) Çelebi, O.; Erten, Hasan N.In this research, the adsorption behaviors of two important fission product radionuclides (137Cs and 133Ba) onto sodium form of insolubilized humic acid (INaA) were investigated as a function of time, cation concentration and temperature, utilizing radiotracer method. The resulting data was fitted well to the Freundlich and Dubinin-Radushkevich (D-R) isotherms. Thermodynamic constants such as; free energy (ΔGads), enthalpy (ΔHads), entropy (ΔSads) of adsorption were determined. Temperature change didn't effect sorption processes significantly. Best fitting kinetic models were found for a better understanding of adsorption mechanisms. It was found that Ba2+ was adsorbed five times more than Cs+ onto structurally modified humic acid and kinetic studies indicated that adsorption behaviors of both ions obey the pseudo second order rate law. The effect of pH changes on adsorption was also examined and optimum pH range was found in the range of pH 6-8. FTIR and solid state carbon nmr (13CNMR) spectroscopic techniques were used to understand the structural changes during insolubilization process. Quantitative determination of adsorption sites was carried out using potentiometric titration method and the resulting data was treated by using appropriate Gran functions.Item Open Access Çizge kesit yöntemi ile hiperspektral görüntülerde anomali tabanlı hedef tespiti(IEEE, 2015-05) Batı, E.; Erdinç, Acar; Çeşmeci, D.; Çalışkan, A.; Koz, A.; Aksoy, Selim; Ertürk, S.; Alatan, A. A.Hiperspektral hedef tespiti için yürütülen çalışmalar genel olarak iki sınıfta degerlendirilebilir. İlk sınıf olan anomali tespit yöntemlerinde, hedefin görüntünün geri kalanından farklı oldugu bilgisi kullanılarak görüntü analiz edilmektedir. Diğer sınıfta ise daha önceden bilgisi edinilmiş hedefe ait spektral imza ile görüntüdeki herbir piksel arasındaki benzerlik bulunarak hedefin konumu tespit edimektedir. Her iki sınıf yöntemin de önemli bir dezavantajı hiperspektral görüntü piksellerini bagımsız olarak degerlendirip, aralarındaki komşuluk ilişkilerini gözardı etmesidir. Bu makalede anomali tespit ve imza tabanlı tespit yakla¸sımlarını, pikseller arası komşuluk ilişkilerini de göz önünde bulundurarak birleştiren çizge yaklaşımına dayalı yeni bir yöntem önerilmiştir. Hedeflerin hem imza bilgisine sahip olundugu hem de anomali sayılabilecek ölçülerde olduğu varsayılarak önerilen çizge yaklaşımında önplan için imza bilgisi kullanan özgün bir türev tabanlı uyumlu filtre önerilmiştir. Arkaplan için ise seyreklik bilgisi kullanarak Gauss karışım bileşeni kestirimi yapan yeni bir anomali tespit yöntemi geliştirilmiştir. Son olarak komşular arası benzerligi tanımlamak için ise spektral bir benzerlik ölçütü olan spektral açı eleştiricisi kullanılmıştır. Önerilen çizge tabanlı yöntemin önplan, arkaplan ve komşuluk ilişkilerini uygun şekilde birleştirdigi ve önceki yöntemlere göre hedefi gürültüden arınmış bir bütün şeklinde başarıyla tespit edebildigi gözlemlenmiştir. The studies on hyperspectral target detection until now, has been treated in two approaches. Anomaly detection can be considered as the first approach, which analyses the hyperspectral image with respect to the difference between target and the rest of the hyperspectral image. The second approach compares the previously obtained spectral signature of the target with the pixels of the hyperspectral image in order to localize the target. A distinctive disadvantage of the aforementioned approaches is to treat each pixel of the hyperspectral image individually, without considering the neighbourhood relations between the pixels. In this paper, we propose a target detection algorithm which combines the anomaly detection and signature based hyperspectral target detection approaches in a graph based framework by utilizing the neighbourhood relations between the pixels. Assuming that the target signature is available and the target sizes are in the range of anomaly sizes, a novel derivative based matched filter is first proposed to model the foreground. Second, a new anomaly detection method which models the background as a Gaussian mixture is developed. The developed model estimates the optimal number of components forming the Gaussian mixture by means of utilizing sparsity information. Finally, the similarity of the neighbouring hyperspectral pixels is measured with the spectral angle mapper. The overall proposed graph based method has successfully combined the foreground, background and neighbouring information and improved the detection performance by locating the target as a whole object free from noises. © 2015 IEEE.Item Open Access Comparison of terahertz technologies for detection and identification of explosives(SPIE, 2014-05) Beigang, R.; Biedron, S. G.; Dyjak, S.; Ellrich, F.; Haakestad, M.W.; Hübsch, D.; Kartaloglu, Tolga; Özbay, Ekmel; Ospald, F.; Palka, N.; Puc, U.; Czerwiñska, E.; Sahin, A. B.; Sešek, A.; Trontelj, J.; Švigelj, A.; Altan, H.; Van Rheenen, A.D.; Walczakowski, M.We present results on the comparison of different THz technologies for the detection and identification of a variety of explosives from our laboratory tests that were carried out in the framework of NATO SET-193 THz technology for stand-off detection of explosives: from laboratory spectroscopy to detection in the field under the same controlled conditions. Several laser-pumped pulsed broadband THz time-domain spectroscopy (TDS) systems as well as one electronic frequency-modulated continuous wave (FMCW) device recorded THz spectra in transmission and/or reflection. © 2014 SPIE.Item Open Access Continuously tunable emission in inverted type ‐ I CdS/CdSe core/crown semiconductor nanoplatelets(Wiley, 2015-07-15) Delikanlı, S.; Güzeltürk, B.; Hernandez - Martinez, P. L.; Erdem, T.; Keleştemur, Y.; Olutas M.; Akgül, M. Z.; Demir, Hilmi VolkanThe synthesis and unique tunable optical properties of core/crown nanoplatelets having an inverted Type-I heterostructure are presented. Here, colloidal 2D CdS/CdSe heteronanoplatelets are grown with thickness of four monolayers using seed-mediated method. In this work, it is shown that the emission peak of the resulting CdS/CdSe heteronanoplatelets can be continuously spectrally tuned between the peak emission wavelengths of the core only CdS nanoplatelets (421 nm) and CdSe nanoplatelets (515 nm) having the same vertical thickness. In these inverted Type-I nanoplatelets, the unique continuous tunable emission is enabled by adjusting the lateral width of the CdSe crown, having a narrower bandgap, around the core CdS nanoplatelet, having a wider bandgap, as a result of the controlled lateral quantum confinement in the crown region additional to the pure vertical confinement. As a proof-of-concept demonstration, a white light generation is shown by using color conversion with these CdS/CdSe heteronanoplatelets having finely tuned thin crowns, resulting in a color rendering index of 80. The robust control of the electronic structure in such inverted Type-I heteronanoplatelets achieved by tailoring the lateral extent of the crown coating around the core template presents a new enabling pathway for bandgap engineering in solution-processed quantum wells.Item Open Access Coupled plasmonic structures for sensing, energy and spectroscopy applications(2015-08) Ayas, SencerRecent advances in nanofabrication and characterization methods have enabled the study of novel optical phenomena, thus boosting the research in nanophotonics and plasmonics. Metal nanostructures offer a route for the excitation of surface plasmons by confining the light in sub-wavelength dimensions, yielding extremely high electromagnetic field intensities. Moreover, coupling different plasmon modes offers a rich optical dispersion which cannot be obtained inherently by using single plasmonic resonator. In this thesis, we first present a detailed study of simple coupled plasmonic structures based on metal-insulator-metal structure. Then, we use similar structures to devise novel optical platforms in various applications such as surface enhanced Raman spectroscopy (SERS), surface enhanced infrared absorption spectroscopy (SEIRA) and plasmon enhanced hot-electron devices. The first part of this thesis concentrates on coupled plasmonic structures and their spectroscopy and photodetector applications. Firstly, we study these structures numerically and analytically and show surface enhanced Raman spectroscopy (SERS) as a possible application with uniform signal intensities over large areas. Then, fabricating these plasmonic surfaces with sub-10nm gaps over large areas lead to development of single molecule Raman spectroscopy platforms. As an energy related application, a contact free characterization method is developed to probe hot electrons where similar coupled plasmonic surfaces are employed as hot electron devices. Finally, using aluminum and its native aluminum oxide hierarchical plasmonic surfaces are fabricated and its spectroscopy applications are demonstrated. In the second part of, we develop interference-coating-based sensing platforms in the visible and infrared wavelengths. Despite large field enhancements, plasmonic structures suffer from low signal intensities due to low mode volumes. To overcome this issue we propose another strategy, namely using interference coatings with small and uniform electric field enhancements over large mode volumes. These surfaces outperform the conventional plasmonic surfaces when they are used as infrared absorption spectroscopy platforms. Finally, similar surfaces are employed as colorimetric sensor platforms to sense monolayer and bilayer proteins simply by change in the surface color.Item Open Access Dc-switchable and single-nanocrystal-addressable coherent population transfer(2010) Gunceler, D.; Bulutay, C.Achieving coherent population transfer in the solid-state is challenging compared to atomic systems due to closely spaced electronic states and fast decoherence. Here, within an atomistic pseudopotential theory, we offer recipes for the stimulated Raman adiabatic passage in embedded silicon and germanium nanocrystals. The transfer efficiency spectra display characteristic Fano resonances. By exploiting the Stark effect, we predict that transfer can be switched off with a dc voltage. As the population transfer is highly sensitive to structural variations, with a choice of a sufficiently small two-photon detuning bandwidth, it can be harnessed for addressing individual nanocrystals within an ensemble. © 2010 American Institute of Physics.Item Open Access Dynamic Nuclear Spin Polarization in Resonant Laser Spectroscopy of a quantum dot(American Physical Society, 2012-05-09) Hogele, A.; Kroner, M.; Latta, C.; Claassen, M.; Carusotto, I.; Bulutay, C.; Imamoglu, A.Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.Item Open Access Electronic excited states of the CP29 antenna complex of green plants: a model based on exciton calculations(Springer / Kluwer Academic Publishers, 2000) İşerı, E. İ.; Albayrak, D.; Gülen, D.We have suggested a model for the electronic excited states of the minor plant antenna, CP29, by incorporating a considerable part of the current information offered by structure determination, site-directed mutagenesis, and spectroscopy in the modeling. We have assumed that the electronic excited states of the complex have been decided by the chlorophyll-chlorophyll (Chl) and Chl-protein interactions and have modeled the Coulombic interaction between a pair of Chls in the point-dipole approximation and the Chl-protein interactions are treated as empirical fit parameters. We have suggested the Qy dipole moment orientations and the site energies for all the chlorophylls in the complex through a simultaneous simulation of the absorption and linear dichroism spectra. The assignments proposed have been discussed to yield a satisfactory reproduction of all prominent features of the absorption, linear and circular dichroism spectra as well as the key spectral and temporal characteristics of the energy transfer processes among the chlorophylls. The orientations and the spectral assignments obtained by relatively simple exciton calculations have been necessary to provide a good point of departure for more detailed treatments of structure-function relationship in CP29. Moreover, it has been discussed that the CP29 model suggested can guide the studies for a better understanding of the structure-function relationship in the major plant antenna, LHCII.Item Open Access Engineered peptides for nanohybrid assemblies(American Chemical Society, 2014-02-04) Seker U.O.S.; Sharma, V. K.; Akhavan S.; Demir, Hilmi VolkanInspired by biological material synthesis, synthetic biomineralization peptides have been screened through a laboratory evolution using biocombinatorial techniques. In this study, using the fine examples in nature, silica binding peptides and gold binding peptides were fused together to form a hybrid peptide. We designed fusion peptides with different gold binding and silica binding parts. First, we have tested the binding capability of the fusion peptides using quartz crystal microbalance on gold surface and silica surface. Second, S1G1 hybrid peptide enabled assembly of gold nanoparticles on a silica surface was achieved. Finally, nanomaterial synthesis ability of the S1G1 peptide was presented by the formation of a silica film on a gold surface. In this study, we are presenting a hybrid peptide tool for nanohybrid assembly as a promising route for nanotechnology applications.Item Open Access Fourier transform plasmon resonance spectrometer(2017-01) Aibek uulu, DoolosNanophotonics is an emerging field of research aiming to control interaction of light with matter in nanometer scale. Electrons localized on metallic nanoparticles generate localized plasmon oscillations with interesting optical properties that can be used for various sensing applications. Spectroscopic sensing using plasmonic particles could provide more detailed information, however it requires bulky spectrometers which limits its applications. In this thesis, a nanometer scale Fourier Transform Plasmon Resonance (FTPR) spectrometer is presented. FTPR spectrometer consists of a nanometer slit-grove or slit-ridge plasmon interferometer with varying optical path. The inherent coherence of the surface plasmons propagating through the sub-wavelength holes yield high contrast spatial interference pattern. FTPR spectrometer converts this spatial interference pattern in to spectroscopic information using Fast Fourier Transform (FFT) algorithm. In our design, there is no need for a bulky dispersive spectrometer or dispersive optical elements. We anticipate that high sensitivity of surface plasmons together with spectroscopic information and nanometer dimensions provides new avenues for plasmonic sensors.Item Open Access Hofstadter butterfly evolution in the space of two-dimensional bravais lattices(American Physical Society, 2017) Yllmaz, F.; Oktel, M. Ö.The self-similar energy spectrum of a particle in a periodic potential under a magnetic field, known as the Hofstadter butterfly, is determined by the lattice geometry as well as the external field. Recent realizations of artificial gauge fields and adjustable optical lattices in cold-atom experiments necessitate the consideration of these self-similar spectra for the most general two-dimensional lattice. In a previous work [F. Yllmaz, Phys. Rev. A 91, 063628 (2015)PLRAAN1050-294710.1103/PhysRevA.91.063628], we investigated the evolution of the spectrum for an experimentally realized lattice which was tuned by changing the unit-cell structure but keeping the square Bravais lattice fixed. We now consider all possible Bravais lattices in two dimensions and investigate the structure of the Hofstadter butterfly as the lattice is deformed between lattices with different point-symmetry groups. We model the optical lattice with a sinusoidal real-space potential and obtain the tight-binding model for any lattice geometry by calculating the Wannier functions. We introduce the magnetic field via Peierls substitution and numerically calculate the energy spectrum. The transition between the two most symmetric lattices, i.e., the triangular and the square lattices, displays the importance of bipartite symmetry featuring deformation as well as closing of some of the major energy gaps. The transitions from the square to rectangular lattice and from the triangular to centered rectangular lattices are analyzed in terms of coupling of one-dimensional chains. We calculate the Chern numbers of the major gaps and Chern number transfer between bands during the transitions. We use gap Chern numbers to identify distinct topological regions in the space of Bravais lattices.Item Open Access Hybridization of fano and vibrational resonances in surface-enhanced infrared absorption spectroscopy of streptavidin monolayers on metamaterial substrates(2014) Alici, K. B.We present spectral hybridization of organic and inorganic resonant materials and related bio-sensing mechanism. We utilized a bound protein (streptavidin) and a Fano-resonant metasurface to illustrate the concept. The technique allows us to investigate the vibrational modes of the streptavidin and how they couple to the underlying metasurface. This optical, label-free, nonperturbative technique is supported by a coupled mode-theory analysis that provides information on the structure and orientation of bound proteins. We can also simultaneously monitor the binding of analytes to the surface through monitoring the shift of the metasurface resonance. All of this data opens up interesting opportunities for applications in biosensing, molecular electronics and proteomics. © 2014 IEEE.Item Open Access Landau quantization of two-dimensional heavy holes, energy spectrum of magnetoexcitons and Auger-recombination lines(2013) Podlesny I.V.; Moskalenko, S.A.; Hakioǧlu, T.; Kiselyov, A.A.; Gherciu L.The Landau quantization of the two-dimensional (2D) heavy holes, its influence on the energy spectrum of 2D magnetoexcitons, as well as their optical orientation are studied. The Hamiltonian of the heavy holes is written in two-band model taking into account the Rashba spin-orbit coupling (RSOC) with two spin projections, but with nonparabolic dispersion law and third-order chirality terms. The most Landau levels, except three with m=0,1,2, are characterized by two quantum numbers m-3 and m for m≥3 for two spin projections correspondingly. The difference between them is determined by the third-order chirality. Four lowest Landau levels (LLLs) for heavy holes were combined with two LLLs for conduction electron, which were taken the same as they were deduced by Rashba in his theory of spin-orbit coupling (SOC) based on the initial parabolic dispersion law and first-order chirality terms. As a result of these combinations eight 2D magnetoexciton states were formed. Their energy spectrum and the selection rules for the quantum transitions from the ground state of the crystal to exciton states were determined. On this base such optical orientation effects as spin polarization and magnetoexciton alignment are discussed. The continuous transformation of the shake-up (SU) into the shake-down (SD) recombination lines is explained on the base of nonmonotonous dependence of the heavy hole Landau quantization levels as a function of applied magnetic field. © 2013 Elsevier B.V. All rights reserved.Item Open Access Left-and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials(American Physical Society, 2004) Katsarakis, N.; Koschny, T.; Kafesaki, M.; Economou, E. N.; Özbay, Ekmel; Soukoulis, C. M.We present free-space microwave measurements on composite metamaterials (CMMs) consisting of split ring resonators (SRRs) and wires either on the same dielectric board or on alternating boards. Our experimental results disprove the widely held belief that the occurrence of a CMM transmission peak within the stop bands of the SRRs alone and wires alone constitutes a clear demonstration of left-handed (LH) behavior. This belief is based on the assumption that the stop bands of SRRs alone and wires alone are not affected by the simultaneous presence of both. We show here that this assumption is wrong: The effective plasma frequency, ω′p, of the CMM is actually substantially lower than the wires-only plasma frequency, ωp; furthermore, the in-plane wires, as opposed to the off-plane case, push the magnetic resonance frequency of the SRRs, ωm, to a higher value, ω′m, for the CMM. We conclude that the criterion for deciding whether a peak in the transmission spectrum through a CMM is really left-handed is for the peak to be located above ω′m and below ω′p. Our results provide a definite way for experimentally identifying ω′p.Item Open Access Metabolomics of small intestine neuroendocrine tumors and related hepatic metastases(MDPI AG, 2019-12) Çiçek, A. Ercüment; Imperiale, A.; Poncet, G.; Addeo, P.; Ruhland, E.; Roche, C.; Battini, S.; Chenard, M. P.; Hervieu, V.; Goichot, B.; Bachellier, P.; Walter, T.; Namer, I. J.To assess the metabolomic fingerprint of small intestine neuroendocrine tumors (SI-NETs) and related hepatic metastases, and to investigate the influence of the hepatic environment on SI-NETs metabolome. Ninety-four tissue samples, including 46 SI-NETs, 18 hepatic NET metastases and 30 normal SI and liver samples, were analyzed using 1H-magic angle spinning (HRMAS) NMR nuclear magnetic resonance (NMR) spectroscopy. Twenty-seven metabolites were identified and quantified. Differences between primary NETs vs. normal SI and primary NETs vs. hepatic metastases, were assessed. Network analysis was performed according to several clinical and pathological features. Succinate, glutathion, taurine, myoinositol and glycerophosphocholine characterized NETs. Normal SI specimens showed higher levels of alanine, creatine, ethanolamine and aspartate. PLS-DA revealed a continuum-like distribution among normal SI, G1-SI-NETs and G2-SI-NETs. The G2-SI-NET distribution was closer and clearly separated from normal SI tissue. Lower concentration of glucose, serine and glycine, and increased levels of choline-containing compounds, taurine, lactate and alanine, were found in SI-NETs with more aggressive tumors. Higher abundance of acetate, succinate, choline, phosphocholine, taurine, lactate and aspartate discriminated liver metastases from normal hepatic parenchyma. Higher levels of alanine, ethanolamine, glycerophosphocholine and glucose was found in hepatic metastases than in primary SI-NETs. The present work gives for the first time a snapshot of the metabolomic characteristics of SI-NETs, suggesting the existence of complex metabolic reality, maybe characteristic of different tumor evolution.Item Open Access Model-based spectral analysis of photon propagation through nanoparticle-labeled epithelial tissues(SPIE, 2011) Cihan, Can; Arifler, D.Metal nanoparticles can function as optical contrast enhancers for reflectance-based diagnosis of epithelial precancer. We carry out Monte Carlo simulations to model photon propagation through normal tissues, unlabeled precancerous tissues, and precancerous tissues labeled with gold nanospheres and we compute the spectral reflectance response of these different tissue states. The results indicate that nanoparticle-induced changes in the spectral reflectance profile of tissues depend not only on the properties of these particles but also on the source-detector geometry used. When the source and detector fibers are oriented side by side and perpendicular to the tissue surface, the reflectance intensity of precancerous tissue is lower compared to that of normal tissue over the entire wavelength range simulated and addition of nanospheres enhances this negative contrast. When the fibers are tilted toward each other, the reflectance intensity of precancerous tissue is higher compared to that of normal tissue and labeling with nanospheres causes a significant enhancement of this positive contrast. The results also suggest that model-based spectral analysis of photon propagation through nanoparticle-labeled tissues provides a useful framework to quantify the extent of achievable contrast enhancement due to external labeling and to assess the diagnostic potential of nanoparticle-enhanced optical measurements. © 2011 SPIE-OSA.Item Open Access Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA(Springer, 2014) Ozdemir, A.; Gursacli, R. T.; Tekinay, T.The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV-Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid-DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54x104 M -1. FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations. © 2014 Springer Science+Business Media.Item Open Access Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser(2010) Ortaç, B.; Zaviyalov, A.; Nielsen, C.K.; Egorov O.; Iliew, R.; Limpert J.; Lederer F.; Tünnermann, A.We report the experimental generation of two-soliton molecules in an all-polarization-maintaining ytterbium-doped fiber laser operating in the normal dispersion regime. These molecules exhibit an independently evolving phase and are characterized by a regular spectral modulation pattern with a modulation depth of 80% measured as an averaged value. Moreover, the numerical modeling confirms that the limited modulation depth of the spectrum is caused by the evolution of the phase difference between the pulses. © 2010 Optical Society of America.Item Open Access Plasmonic enhanced terahertz time-domain spectroscopy system for identification of common explosives(SPIE, 2017) Demirağ, Yiğit; Bütün, Bayram; Özbay, EkmelIn this study, we present a classification algorithm for terahertz time-domain spectroscopy systems (THz-TDS) that can be trained to identify most commonly used explosives (C4, HMX, RDX, PETN, TNT, composition-B and blackpowder) and some non-explosive samples (lactose, sucrose, PABA). Our procedure can be used in any THz-TDS system that detects either transmission or reflection spectra at room conditions. After preprocessing the signal in low THz regime (0.1-3 THz), our algorithm takes advantages of a latent space transformation based on principle component analysis in order to classify explosives with low false alarm rate. © 2017 SPIE.Item Open Access Point normal metal-superconductor (NS) contact in nonballistic regime(World Scientific Publishing, 2003) Askerzade, İ. N.; Kulik, Igor OrestovichWe analyze the point NS contact conductivity taking into account the depression of superconductivity at high-injection current density and Andreev reflection at the adaptive NS boundary. The dependence of the excess current on the voltage, as well as conductivity of contact at arbitrary voltage is obtained.