Browsing by Subject "Sol-gel"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Effect of processing options on ultra-low-loss lead-magnesium-niobium titanate thin films for high density capacitors(Elsevier, 2013) Chen W.; McCarthy, K.G.; O'Brien, S.; Çopuroǧlu, Mehmet; Cai, M.; Winfield, R.; Mathewson, A.This work studies the impact of annealing temperatures on PMNT (lead-magnesium niobate-lead titanate, Pb(Mg0.33Nb 0.67)0.65Ti0.35O3) thin films grown on a silicon substrate. The electrical properties of the thin films, such as dielectric constant and loss tangent, are shown to depend strongly on the annealing temperature, with the best electrical properties being achieved at the highest annealing temperature. It is seen that the perovskite phase is highest in the sample annealed at 750 C indicating that a relatively high temperature is necessary for complete transition of PMNT to the perovskite phase. The sample annealed at 400 C exhibits the lowest loss tangent of approximately 0.007 at a frequency of 1 MHz. © 2012 Elsevier B.V.Item Open Access Nanocomposite glass coatings containing hexagonal boron nitride nanoparticles(Pergamon Press, 2016) Çamurlu, H. E.; Akarsu, E.; Arslan, O.; Mathur, S.Glass coatings composed of SiO2-K2O-Li2O, containing non-modified and fluorosilane modified hexagonal boron nitride (hBN) nanoparticles, were prepared on stainless steel plates through sol-gel spin-coating method. Coatings were examined by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), atomic force microscopy (AFM) and thermo-gravimetric analysis (TGA). 1.3-2.5 μm thick uniform coatings were obtained after curing at 500 °C for 1 h. The coatings adhered well to the steel substrates. It was determined by salt spray tests that the coatings enhance corrosion resistance. The aim of hydrophobic fluorosilane modification of hBN nanoparticles was to enrich hBN quantity on the top surface of the coatings. Coatings containing fluorosilane modified hBN nanoparticles presented slightly lower friction coefficient values than the other coatings.Item Open Access Novel nanocomposite coatings of nanoparticles(2011) Toru, Refik SinaIncorporating nanoparticles into nanocomposite thin-films enables coatings with multi-functionality depending on the particle type and size, and the film morphology. These multiple functions may include, for example, combinations of photocatalysis, hydrophobicity, scratch resistance, and antibacterial property. Here we proposed and demonstrated a new encapsulation nanocomposite with controllable refractive index and potentially additional functional properties for coating photonic devices, for instance, light-emitting diodes (LEDs). To design and implement this nanocomposite coating with tunable refractive index, we employed TiO2 nanoparticles of various diameters because of their relatively high refractive index. We embedded these nanoparticles in our encapsulation sol-gel material during synthesis. In addition, we incorporated several polymerforming chemicals during synthesis to control additional functions such as hydrophobicity and scratch resistance. We used characterization tools of atomic force microscopy, refractometry, contact angle measurement, and scanning electron microscopy to study material properties.Item Open Access Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification(American Chemical Society, 2016) Arslan, O.; Aytac Z.; Uyar, TamerElectrospun cellulose acetate nanofibers (CA-NF) have been modified with perfluoro alkoxysilanes (FS/CA-NF) for tailoring their chemical and physical features aiming oil-water separation purposes. Strikingly, hybrid FS/CA-NF showed that perfluoro groups are rigidly positioned on the outer surface of the nanofibers providing superhydrophobic characteristic with a water contact angle of ∼155°. Detailed analysis showed that hydrolysis/condensation reactions led to the modification of the acetylated β(1 → 4) linked d-glucose chains of CA transforming it into a superhydrophobic nanofibrous mat. Analytical data have revealed that CA-NF surfaces can be selectively controlled for fabricating the durable, robust and water resistant hybrid electrospun nanofibrous mat. The -OH groups available on the CA structure allowed the basic sol-gel reactions started by the reactive FS hybrid precursor system which can be monitored by spectroscopic analysis. Since alkoxysilane groups on the perfluoro silane compound are capable of reacting for condensation together with the CA, superhydrophobic nanofibrous mat is obtained via electrospinning. This structural modification led to the facile fabrication of the novel oil/water nanofibrous separator which functions effectively demonstrated by hexane/oil and water separation experiments. Perfluoro groups consequently modified the hydrophilic CA nanofibers into superhydrophobic character and therefore FS/CA-NF could be quite practical for future applications like water/oil separators, as well as self-cleaning or water resistant nanofibrous structures.