Browsing by Subject "Software safety"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Architecture framework for software safety(Springer, 2014-09) Gürbüz, Havva Gülay; Pala Er, N.; Tekinerdoğan, BedirCurrently, an increasing number of systems are controlled by soft- ware and rely on the correct operation of software. In this context, a safety- critical system is defined as a system in which malfunctioning software could result in death, injury or damage to environment. To mitigate these serious risks, the architecture of safety-critical systems needs to be carefully designed and analyzed. A common practice for modeling software architecture is the adoption of software architecture viewpoints to model the architecture for par- ticular stakeholders and concerns. Existing architecture viewpoints tend to be general purpose and do not explicitly focus on safety concerns in particular. To provide a complementary and dedicated support for designing safety critical systems, we propose an architecture framework for software safety. The archi- tecture framework is based on a metamodel that has been developed after a tho- rough domain analysis. The framework includes three coherent viewpoints, each of which addressing an important concern. The application of the view- points is illustrated for an industrial case of safety-critical avionics control computer system. © Springer International Publishing Switzerland 2014.Item Open Access Architecture-driven fault-based testing for software safety(2014) Gürbüz, Havva GülayA safety-critical system is defined as a system in which the malfunctioning of software could result in death, injury or damage to environment. To mitigate these serious risks the architecture of safety-critical systems need to be carefully designed and analyzed. A common practice for modeling software architecture is the adoption of architectural perspectives and software architecture viewpoint approaches. Existing approaches tend to be general purpose and do not explicitly focus on safety concern in particular. To provide a complementary and dedicated support for designing safety-critical systems we propose safety perspective and an architecture framework approach for software safety. Once the safety-critical systems are designed it is important to analyze these for fitness before implementation, installation and operation. Hereby, it is important to ensure that the potential faults can be identified and cost-effective solutions are provided to avoid or recover from the failures. In this context, one of the most important issues is to investigate the effectiveness of the applied safety tactics to safety-critical systems. Since the safety-critical systems are complex systems, testing of these systems is challenging and very hard to define proper test suites for these systems. Several fault-based software testing approaches exist that aim to analyze the quality of the test suites. Unfortunately, these approaches do not directly consider safety concern and tend to be general purpose and they doesn’t consider the applied the safety tactics. We propose a fault-based testing approach for analyzing the test suites using the safety tactic and fault knowledge.