Architecture-driven fault-based testing for software safety
Files
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
A safety-critical system is defined as a system in which the malfunctioning of software could result in death, injury or damage to environment. To mitigate these serious risks the architecture of safety-critical systems need to be carefully designed and analyzed. A common practice for modeling software architecture is the adoption of architectural perspectives and software architecture viewpoint approaches. Existing approaches tend to be general purpose and do not explicitly focus on safety concern in particular. To provide a complementary and dedicated support for designing safety-critical systems we propose safety perspective and an architecture framework approach for software safety. Once the safety-critical systems are designed it is important to analyze these for fitness before implementation, installation and operation. Hereby, it is important to ensure that the potential faults can be identified and cost-effective solutions are provided to avoid or recover from the failures. In this context, one of the most important issues is to investigate the effectiveness of the applied safety tactics to safety-critical systems. Since the safety-critical systems are complex systems, testing of these systems is challenging and very hard to define proper test suites for these systems. Several fault-based software testing approaches exist that aim to analyze the quality of the test suites. Unfortunately, these approaches do not directly consider safety concern and tend to be general purpose and they doesn’t consider the applied the safety tactics. We propose a fault-based testing approach for analyzing the test suites using the safety tactic and fault knowledge.