BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Software"

Filter results by typing the first few letters
Now showing 1 - 20 of 23
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Algorithms for effective querying of compound graph-based pathway databases
    (BioMed Central Ltd., 2009-11-16) Doğrusöz, Uğur; Çetintaş, Ahmet; Demir, Emek; Babur, Özgün
    Background: Graph-based pathway ontologies and databases are widely used to represent data about cellular processes. This representation makes it possible to programmatically integrate cellular networks and to investigate them using the well-understood concepts of graph theory in order to predict their structural and dynamic properties. An extension of this graph representation, namely hierarchically structured or compound graphs, in which a member of a biological network may recursively contain a sub-network of a somehow logically similar group of biological objects, provides many additional benefits for analysis of biological pathways, including reduction of complexity by decomposition into distinct components or modules. In this regard, it is essential to effectively query such integrated large compound networks to extract the sub-networks of interest with the help of efficient algorithms and software tools. Results: Towards this goal, we developed a querying framework, along with a number of graph-theoretic algorithms from simple neighborhood queries to shortest paths to feedback loops, that is applicable to all sorts of graph-based pathway databases, from PPIs (protein-protein interactions) to metabolic and signaling pathways. The framework is unique in that it can account for compound or nested structures and ubiquitous entities present in the pathway data. In addition, the queries may be related to each other through "AND" and "OR" operators, and can be recursively organized into a tree, in which the result of one query might be a source and/or target for another, to form more complex queries. The algorithms were implemented within the querying component of a new version of the software tool PATIKAweb (Pathway Analysis Tool for Integration and Knowledge Acquisition) and have proven useful for answering a number of biologically significant questions for large graph-based pathway databases. Conclusion: The PATIKA Project Web site is http://www.patika.org. PATIKAweb version 2.1 is available at http://web.patika.org. © 2009 Dogrusoz et al; licensee BioMed Central Ltd.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The BioPAX community standard for pathway data sharing
    (Nature Publishing Group, 2010-09) Demir, Emek; Cary, M. P.; Paley, S.; Fukuda, K.; Lemer, C.; Vastrik, I.; Wu, G.; D'Eustachio, P.; Schaefer, C.; Luciano, J.; Schacherer, F.; Martinez-Flores, I.; Hu, Z.; Jimenez-Jacinto, V.; Joshi-Tope, G.; Kandasamy, K.; Lopez-Fuentes, A. C.; Mi, H.; Pichler, E.; Rodchenkov, I.; Splendiani, A.; Tkachev, S.; Zucker, J.; Gopinath, G.; Rajasimha, H.; Ramakrishnan, R.; Shah, I.; Syed, M.; Anwar, N.; Babur, Özgün; Blinov, M.; Brauner, E.; Corwin, D.; Donaldson, S.; Gibbons, F.; Goldberg, R.; Hornbeck, P.; Luna, A.; Murray-Rust, P.; Neumann, E.; Reubenacker, O.; Samwald, M.; Iersel, Martijn van; Wimalaratne, S.; Allen, K.; Braun, B.; Whirl-Carrillo, M.; Cheung, Kei-Hoi; Dahlquist, K.; Finney, A.; Gillespie, M.; Glass, E.; Gong, L.; Haw, R.; Honig, M.; Hubaut, O.; Kane, D.; Krupa, S.; Kutmon, M.; Leonard, J.; Marks, D.; Merberg, D.; Petri, V.; Pico, A.; Ravenscroft, D.; Ren, L.; Shah, N.; Sunshine, M.; Tang R.; Whaley, R.; Letovksy, S.; Buetow, K. H.; Rzhetsky, A.; Schachter, V.; Sobral, B. S.; Doğrusöz, Uğur; McWeeney, S.; Aladjem, M.; Birney, E.; Collado-Vides, J.; Goto, S.; Hucka, M.; Novère, Nicolas Le; Maltsev, N.; Pandey, A.; Thomas, P.; Wingender, E.; Karp, P. D.; Sander, C.; Bader, G. D.
    Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery. © 2010 Nature America, Inc. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    BRAPH: A graph theory software for the analysis of brain connectivity
    (Public Library of Science, 2017) Mijalkov, M.; Kakaei, E.; Pereira, J. B.; Westman, E.; Volpe, G.
    The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson’s patients with mild cognitive impairment. © 2017 Mijalkov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    ChiBE: interactive visualization and manipulation of BioPAX pathway models
    (Oxford University Press, 2010-02-01) Babur, Özgün; Doğrusöz, Uğur; Demir, Emek; Sander, C.
    SUMMARY: Representing models of cellular processes or pathways in a graphically rich form facilitates interpretation of biological observations and generation of new hypotheses. Solving biological problems using large pathway datasets requires software that can combine data mapping, querying and visualization as well as providing access to diverse data resources on the Internet. ChiBE is an open source software application that features user-friendly multi-view display, navigation and manipulation of pathway models in BioPAX format. Pathway views are rendered in a feature-rich format, and may be laid out and edited with state-of-the-art visualization methods, including compound or nested structures for visualizing cellular compartments and molecular complexes. Users can easily query and visualize pathways through an integrated Pathway Commons query tool and analyze molecular profiles in pathway context. AVAILABILITY: http://www.bilkent.edu.tr/%7Ebcbi/chibe.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Content-based retrieval of historical Ottoman documents stored as textual images
    (IEEE, 2004) Şaykol, E.; Sinop, A. K.; Güdükbay, Uğur; Ulusoy, Özgür; Çetin, A. Enis
    There is an accelerating demand to access the visual content of documents stored in historical and cultural archives. Availability of electronic imaging tools and effective image processing techniques makes it feasible to process the multimedia data in large databases. In this paper, a framework for content-based retrieval of historical documents in the Ottoman Empire archives is presented. The documents are stored as textual images, which are compressed by constructing a library of symbols occurring in a document, and the symbols in the original image are then replaced with pointers into the codebook to obtain a compressed representation of the image. The features in wavelet and spatial domain based on angular and distance span of shapes are used to extract the symbols. In order to make content-based retrieval in historical archives, a query is specified as a rectangular region in an input image and the same symbol-extraction process is applied to the query region. The queries are processed on the codebook of documents and the query images are identified in the resulting documents using the pointers in textual images. The querying process does not require decompression of images. The new content-based retrieval framework is also applicable to many other document archives using different scripts.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    EVIM: a software package for extreme value analysis in MATLAB
    (Walter de Gruyter GmbH, 2001) Gençay, R.; Selçuk, F.; Ulugülyagci, A.
    From the practitioners' point of view, one of the most interesting questions that tail studies can answer is what are the extreme movements that can be expected in financial markets? Have we already seen the largest ones or are we going to experience even larger movements? Are there theoretical processes that can model the type of fat tails that come out of our empirical analysis? Answers to such questions are essential for sound risk management of financial exposures. It turns out that we can answer these questions within the framework of the extreme value theory. This paper provides a step-by-step guideline for extreme value analysis in the MATLAB environment with several examples.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    GenASM: a high-performance, low-power approximate string matching acceleration framework for genome sequence analysis
    (IEEE Computer Society, 2020) Şenol-Çalı, D.; Kalsi, G. S.; Bingöl, Zülal; Fırtına, C.; Subramanian, L.; Kim, J. S.; Ausavarungnirun, R.; Alser, M.; Gomez-Luna, J.; Boroumand, A.; Norion, A.; Scibisz, A.; Subramoneyon, S.; Alkan, Can; Ghose, S.; Mutlu, Onur
    Genome sequence analysis has enabled significant advancements in medical and scientific areas such as personalized medicine, outbreak tracing, and the understanding of evolution. To perform genome sequencing, devices extract small random fragments of an organism's DNA sequence (known as reads). The first step of genome sequence analysis is a computational process known as read mapping. In read mapping, each fragment is matched to its potential location in the reference genome with the goal of identifying the original location of each read in the genome. Unfortunately, rapid genome sequencing is currently bottlenecked by the computational power and memory bandwidth limitations of existing systems, as many of the steps in genome sequence analysis must process a large amount of data. A major contributor to this bottleneck is approximate string matching (ASM), which is used at multiple points during the mapping process. ASM enables read mapping to account for sequencing errors and genetic variations in the reads. We propose GenASM, the first ASM acceleration framework for genome sequence analysis. GenASM performs bitvectorbased ASM, which can efficiently accelerate multiple steps of genome sequence analysis. We modify the underlying ASM algorithm (Bitap) to significantly increase its parallelism and reduce its memory footprint. Using this modified algorithm, we design the first hardware accelerator for Bitap. Our hardware accelerator consists of specialized systolic-array-based compute units and on-chip SRAMs that are designed to match the rate of computation with memory capacity and bandwidth, resulting in an efficient design whose performance scales linearly as we increase the number of compute units working in parallel. We demonstrate that GenASM provides significant performance and power benefits for three different use cases in genome sequence analysis. First, GenASM accelerates read alignment for both long reads and short reads. For long reads, GenASM outperforms state-of-the-art software and hardware accelerators by 116× and 3.9×, respectively, while reducing power consumption by 37× and 2.7×. For short reads, GenASM outperforms state-of-the-art software and hardware accelerators by 111× and 1.9×. Second, GenASM accelerates pre-alignment filtering for short reads, with 3.7× the performance of a state-of-the-art pre-alignment filter, while reducing power consumption by 1.7× and significantly improving the filtering accuracy. Third, GenASM accelerates edit distance calculation, with 22-12501× and 9.3-400× speedups over the state-of-the-art software library and FPGA-based accelerator, respectively, while reducing power consumption by 548-582× and 67×. We conclude that GenASM is a flexible, high-performance, and low-power framework, and we briefly discuss four other use cases that can benefit from GenASM.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Identification of relative protein bands in polyacrylamide gel electrophoresis (PAGE) using a multi-resolution snake algorithm
    (Informa Healthcare, 1999-06) Gürcan, M. N.; Koyutürk, M.; Yildiz, H. S.; Çetin-Atalay R.; Çetin, A. Enis
    In polyacrylamide gel electrophoresis (PAGE) image analysis, it is important to determine the percentage of the protein of interest of a protein mixture. This study presents reliable computer software to determine this percentage. The region of interest containing the protein band is detected using the snake algorithm. The iterative snake algorithm is implemented in a multi-resolutional framework. The snake is initialized on a low-resolution image. Then, the final position of the snake at the low resolution is used as the initial position in the higher-resolution image. Finally, the area of the protein is estimated as the area enclosed by the final position of the snake.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Inference attacks against kin genomic privacy
    (Institute of Electrical and Electronics Engineers Inc., 2017) Ayday, E.; Humbert M.
    Genomic data poses serious interdependent risks: your data might also leak information about your family members' data. Methods attackers use to infer genomic information, as well as recent proposals for enhancing genomic privacy, are discussed. © 2003-2012 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Integrating biological pathways and genomic profiles with ChiBE 2
    (BioMed Central Ltd., 2014) Babur, O.; Dogrusoz, U.; Çakır, M.; Aksoy, B. A.; Schultz, N.; Sander, C.; Demir, E.
    Background: Dynamic visual exploration of detailed pathway information can help researchers digest and interpret complex mechanisms and genomic datasets.Results: ChiBE is a free, open-source software tool for visualizing, querying, and analyzing human biological pathways in BioPAX format. The recently released version 2 can search for neighborhoods, paths between molecules, and common regulators/targets of molecules, on large integrated cellular networks in the Pathway Commons database as well as in local BioPAX models. Resulting networks can be automatically laid out for visualization using a graphically rich, process-centric notation. Profiling data from the cBioPortal for Cancer Genomics and expression data from the Gene Expression Omnibus can be overlaid on these networks.Conclusions: ChiBE's new capabilities are organized around a genomics-oriented workflow and offer a unique comprehensive pathway analysis solution for genomics researchers. The software is freely available at http://code.google.com/p/chibe. © 2014 Babur et al.; licensee BioMed Central Ltd.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
    (American Association for the Advancement of Science (A A A S), 2013) Gao J.; Aksoy, B. A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S. O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N.
    The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics. © 2013 American Association for the Advancement of Science.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    mESAdb: microRNA expression and sequence analysis database
    (Oxford University Press, 2011) Kaya, Koray D.; Karakülah, G.; Yakıcıer, Cengiz M.; Acar, Aybar C.; Konu, Özlen
    MicroRNA expression and sequence analysis database (http://konulab.fen. bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications
    (Oxford University Press, 2014) Hach, F.; Sarrafi, I.; Hormozdiari, F.; Alkan C.; Eichler, E. E.; Sahinalp, S. C.
    High throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for processing and downstream analysis. While tools that report the 'best' mapping location of each read provide a fast way to process HTS data, they are not suitable for many types of downstream analysis such as structural variation detection, where it is important to report multiple mapping loci for each read. For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves mrsFAST, our first cache oblivious read aligner capable of handling multi-mapping reads, through new and compact index structures that reduce not only the overall memory usage but also the number of CPU operations per alignment. In fact the size of the index generated by mrsFAST-Ultra is 10 times smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such as being able to (i) obtain the best mapping loci for each read, and (ii) return all reads that have at most n mapping loci (within an error threshold), together with these loci, for any user specified n. Furthermore, mrsFAST-Ultra is SNP-aware, i.e. it can map reads to reference genome while discounting the mismatches that occur at common SNP locations provided by db-SNP; this significantly increases the number of reads that can be mapped to the reference genome. Notice that all of the above features are implemented within the index structure and are not simple post-processing steps and thus are performed highly efficiently. Finally, mrsFAST-Ultra utilizes multiple available cores and processors and can be tuned for various memory settings. Our results show that mrsFAST-Ultra is roughly five times faster than its predecessor mrsFAST. In comparison to newly enhanced popular tools such as Bowtie2, it is more sensitive (it can report 10 times or more mappings per read) and much faster (six times or more) in the multi-mapping mode. Furthermore, mrsFAST-Ultra has an index size of 2GB for the entire human reference genome, which is roughly half of that of Bowtie2. mrsFAST-Ultra is open source and it can be accessed at http://mrsfast.sourceforge.net. © 2014 The Author(s).
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An ontology for collaborative construction and analysis of cellular pathways
    (Oxford University Press, 2004-02-12) Demir, Emek; Babur, Özgün; Doğrusöz, Uğur; Gürsoy, Atilla; Ayaz, Aslı; Güleşır, Gürcan; Nişancı, Gürkan; Çetin Atalay, Rengül
    Motivation: As the scientific curiosity in genome studies shifts toward identification of functions of the genomes in large scale, data produced about cellular processes at molecular level has been accumulating with an accelerating rate. In this regard, it is essential to be able to store, integrate, access and analyze this data effectively with the help of software tools. Clearly this requires a strong ontology that is intuitive, comprehensive and uncomplicated. Results: We define an ontology for an intuitive, comprehensive and uncomplicated representation of cellular events. The ontology presented here enables integration of fragmented or incomplete pathway information via collaboration, and supports manipulation of the stored data. In addition, it facilitates concurrent modifications to the data while maintaining its validity and consistency. Furthermore, novel structures for representation of multiple levels of abstraction for pathways and homologies is provided. Lastly, our ontology supports efficient querying of large amounts of data. We have also developed a software tool named pathway analysis tool for integration and knowledge acquisition (PATIKA) providing an integrated, multi-user environment for visualizing and manipulating network of cellular events. PATIKA implements the basics of our ontology. © Oxford University Press 2004; All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    PAMOGK-Web: a framework for cancer subtype identification using copy number variatıons
    (2020-12) Akdemir, Furkan Mustafa
    Detection of molecular sub-groups of cancer is important for developing cancer therapeutics and to understand the underlying causes of the molecular differences in these groups. The cancer sequencing projects made multi-omics data available for large cancer cohorts. The multi-omics data provides multiple views into the cancer which can be used to find underlying causes from different perspectives and capture relations not possible with a single view approach. Previously, we developed a pipeline that uses multi-omics data to detect sub-groups of patients called PAMOGK. PAMOGK forms multiple views of the patients using pathways and multi-omics data and assess patient similarities under these views. PAMOGK was designed as a general framework that can be used to map many different omics data but was experimented with mutation, transcriptome, and proteome. In this work, we extend the use of PAMOGK with copy number variation data which shows comparable results to experiments without it. As a second contribution, we provide a web framework designed for PAMOGK easier to make it accessible to general users: PAMOGK-Web. This new web based framework is able to abstract the PAMOGK pipeline and provide a simple interface to run experiments and return results to the users. PAMOGK-Web will be using the generic design of PAMOGK to provide ready to use experiments that include setups using different omics data.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    PATIKAmad: putting microarray data into pathway context
    (Wiley - V C H Verlag GmbH & Co. KGaA, 2008-06) Babur, Özgün; Colak, Recep; Demir, Emek; Doğrusöz, Uğur
    High-throughput experiments, most significantly DNA microarrays, provide us with system-scale profiles. Connecting these data with existing biological networks poses a formidable challenge to uncover facts about a cell's proteome. Studies and tools with this purpose are limited to networks with simple structure, such as protein-protein interaction graphs, or do not go much beyond than simply displaying values on the network. We have built a microarray data analysis tool, named PATIKAmad, which can be used to associate microarray data with the pathway models in mechanistic detail, and provides facilities for visualization, clustering, querying, and navigation of biological graphs related with loaded microarray experiments. PATIKAmad is freely available to noncommercial users as a new module of PATIKAweb at http://web.patika.org. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    PATIKAweb: a Web interface for analyzing biological pathways through advanced querying and visualization
    (Oxford University Press, 2006-02-01) Doğrusöz, Uğur; Erson, E. Zeynep; Giral, Erhan; Demir, Emek; Babur, Özgün; Çetintaş, Ahmet; Çolak, Recep
    Summary: PATIKAweb provides a Web interface for retrieving and analyzing biological pathways in the PATIKA database, which contains data integrated from various prominent public pathway databases. It features a user-friendly interface, dynamic visualization and automated layout, advanced graph-theoretic queries for extracting biologically important phenomena, local persistence capability and exporting facilities to various pathway exchange formats. © The Author 2005. Published by Oxford University Press. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Robust inference of kinase activity using functional networks
    (Nature Publishing Group, 2021-02-19) Yılmaz, S.; Ayati, M.; Schlatzer, D.; Çiçek, A. Ercüment
    Mass spectrometry enables high-throughput screening of phosphoproteins across a broad range of biological contexts. When complemented by computational algorithms, phospho-proteomic data allows the inference of kinase activity, facilitating the identification of dysregulated kinases in various diseases including cancer, Alzheimer’s disease and Parkinson’s disease. To enhance the reliability of kinase activity inference, we present a network-based framework, RoKAI, that integrates various sources of functional information to capture coordinated changes in signaling. Through computational experiments, we show that phosphorylation of sites in the functional neighborhood of a kinase are significantly predictive of its activity. The incorporation of this knowledge in RoKAI consistently enhances the accuracy of kinase activity inference methods while making them more robust to missing annotations and quantifications. This enables the identification of understudied kinases and will likely lead to the development of novel kinase inhibitors for targeted therapy of many diseases. RoKAI is available as web-based tool at http://rokai.io.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Software support for SBGN maps: SBGN-ML and LibSBGN
    (Oxford University Press, 2012) Iersel, Martijn P. van; Villéger, A. C.; Czauderna, T.; Boyd, S. E.; Bergmann, F. T.; Luna, A.; Demir, E.; Sorokin, A.; Dogrusoz, U.; Matsuoka, Y.; Funahashi, A.; Aladjem, M. I.; Mi, H.; Moodie, S. L.; Kitano, H.; Le novère, N.; Schreiber, F.
    Motivation: LibSBGN is a software library for reading, writing and manipulating Systems Biology Graphical Notation (SBGN) maps stored using the recently developed SBGN-ML file format. The library (available in C++ and Java) makes it easy for developers to add SBGN support to their tools, whereas the file format facilitates the exchange of maps between compatible software applications. The library also supports validation of maps, which simplifies the task of ensuring compliance with the detailed SBGN specifications. With this effort we hope to increase the adoption of SBGN in bioinformatics tools, ultimately enabling more researchers to visualize biological knowledge in a precise and unambiguous manner. © The Author(s) 2012. Published by Oxford University Press.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    SyBLaRS: A web service for laying out, rendering and mining biological maps in SBGN, SBML and more
    (Public Library of Science, 2022-11-14) Balcı, Hakan; Doğrusöz, Uğur; Özgül, Yusuf Ziya; Atayev, Perman
    Visualization is a key recurring requirement for effective analysis of relational data. Biology is no exception. It is imperative to annotate and render biological models in standard, widely accepted formats. Finding graph-theoretical properties of pathways as well as identifying certain paths or subgraphs of interest in a pathway are also essential for effective analysis of pathway data. Given the size of available biological pathway data nowadays, automatic layout is crucial in understanding the graphical representations of such data. Even though there are many available software tools that support graphical display of biological pathways in various formats, there is none available as a service for on-demand or batch processing of biological pathways for automatic layout, customized rendering and mining paths or subgraphs of interest. In addition, there are many tools with fine rendering capabilities lacking decent automatic layout support. To fill this void, we developed a web service named SyBLaRS (Systems Biology Layout and Rendering Service) for automatic layout of biological data in various standard formats as well as construction of customized images in both raster image and scalable vector formats of these maps. Some of the supported standards are more generic such as GraphML and JSON, whereas others are specialized to biology such as SBGNML (The Systems Biology Graphical Notation Markup Language) and SBML (The Systems Biology Markup Language). In addition, SyBLaRS supports calculation and highlighting of a number of wellknown graph-theoretical properties as well as some novel graph algorithms turning a specified set of objects of interest to a minimal pathway of interest. We demonstrate that SyBLaRS can be used both as an offline layout and rendering service to construct customized and annotated pictures of pathway models and as an online service to provide layout and rendering capabilities for systems biology software tools. SyBLaRS is open source and publicly available on GitHub and freely distributed under the MIT license. In addition, a sample deployment is available here for public consumption. © 2022 Balci et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • «
  • 1 (current)
  • 2
  • »

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback