Browsing by Subject "Soft tissue"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Ablation-cooled material removal at high speed with femtosecond pulse bursts(OSA, 2015) Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Akçaalan, Önder; Yavaş, S.; Aşık, M. D.; Kesim, Deniz Koray; Yavuz, Koray; Çetin, Barbaros; İlday, Fatih ÖmerWe report exploitation of ablation cooling, a concept well-known in rocket design, to remove materials, including metals, silicon, hard and soft tissue. Exciting possibilities include ablation using sub-microjoule pulses with efficiencies of 100-mJ pulses.Item Open Access Metamaterial-based wireless strain sensors(American Institute of Physics, 2009-07-07) Melik, R.; Unal, E.; Perkgoz, N. K.; Puttlitz, C.; Demir, Hilmi VolkanWe proposed and demonstrated metamaterial-based strain sensors that are highly sensitive to mechanical deformation. Their resonance frequency shift is correlated with the surface strain of our test material and the strain data are reported telemetrically. These metamaterial sensors are better than traditional radio-frequency (rf) structures in sensing for providing resonances with high quality factors and large transmission dips. Using split ring resonators (SRRs), we achieve lower resonance frequencies per unit area compared to other rf structures, allowing for bioimplant sensing in soft tissue (e.g., fracture healing). In 5×5 SRR architecture, our wireless sensors yield high sensitivity (109 kHz/kgf, or 5.148 kHz/microstrain) with low nonlinearity error (<200 microstrain).Item Open Access Nested metamaterials for wireless strain sensing(IEEE, 2009-12-28) Melik, R.; Unal, E.; Perkgoz, N. K.; Santoni, B.; Kamstock, D.; Puttlitz, C.; Demir, Hilmi VolkanWe designed, fabricated, and characterized metamaterial-based RF-microelectromechanical system (RF-MEMS) strain sensors that incorporate multiple split ring resonators (SRRs) in a compact nested architecture to measure strain telemetrically. We also showed biocompatibility of these strain sensors in an animal model. With these devices, our bioimplantable wireless metamaterial sensors are intended, to enable clinicians, to quantitatively evaluate the progression of long-bone fracture healing by monitoring the strain on the implantable fracture fixation hardware in real time. In operation, the transmission spectrum of the metamaterial sensor attached to the implantable fixture is changed when an external load is applied to the fixture, and from this change, the strain is recorded remotely. By employing telemetric characterizations, we reduced the operating frequency and enhanced the sensitivity of our novel nested SRR architecture compared to the conventional SRR structure. The nested SRR structure exhibited a higher sensitivity of 1.09 kHz/kgf operating at lower frequency compared to the classical SRR that demonstrated a sensitivity of 0.72 kHz/kgf. Using soft tissue medium, we achieved the best sensitivity level of 4.00 kHz/kgf with our nested SRR sensor. Ultimately, the laboratory characterization and in vivo biocompatibility studies support further development and characterization of a fracture healing system based on implantable nested SRR.