Browsing by Subject "Single mode fibers"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Burst-mode thulium all-fiber laser delivering femtosecond pulses at a 1 GHz intra-burst repetition rate(Optical Society of America, 2017) Elahı, P.; Kalaycıoğlu, H.; Akçaalan, Ö.; Şenel, Ç.; Ilday, F. Ö.We report on the development of, to the best of our knowledge, the first ultrafast burst-mode laser system operating at a central wavelength of approximately 2 μm, where water absorption and, consequently, the absorption of most biological tissue is very high. The laser comprises a harmonically mode-locked 1-GHz oscillator, which, in turn, seeds a fiber amplifier chain. The amplifier produces 500 ns long bursts containing 500 pulses with 1 GHz intra-burst and 50 kHz inter-burst repetition rates, respectively, at an average power of 1 W, corresponding to 40 nJ pulse and 20 μJ burst energies, respectively. The entire system is built in an all-fiber architecture and implements dispersion management such that output pulses are delivered directly from a single-mode fiber with a duration of 340 fs without requiring any external compression. This gigahertz-repetition-rate system is intended for ablation-cooled laser material removal in the 2 μm wavelength region, which is interesting for laser surgery due to the exceptionally high tissue absorption at this wavelength.Item Open Access Femtosecond laser fabrication of fiber based optofluidic platform for flow cytometry applications(SPIE, 2017) Serhatlioglu, Murat; Elbuken, Çağlar; Ortac, Bülend; Solmaz, Mehmet E.Miniaturized optofluidic platforms play an important role in bio-analysis, detection and diagnostic applications. The advantages of such miniaturized devices are extremely low sample requirement, low cost development and rapid analysis capabilities. Fused silica is advantageous for optofluidic systems due to properties such as being chemically inert, mechanically stable, and optically transparent to a wide spectrum of light. As a three dimensional manufacturing method, femtosecond laser scanning followed by chemical etching shows great potential to fabricate glass based optofluidic chips. In this study, we demonstrate fabrication of all-fiber based, optofluidic flow cytometer in fused silica glass by femtosecond laser machining. 3D particle focusing was achieved through a straightforward planar chip design with two separately fabricated fused silica glass slides thermally bonded together. Bioparticles in a fluid stream encounter with optical interrogation region specifically designed to allocate 405nm single mode fiber laser source and two multi-mode collection fibers for forward scattering (FSC) and side scattering (SSC) signals detection. Detected signal data collected with oscilloscope and post processed with MATLAB script file. We were able to count number of events over 4000events/sec, and achieve size distribution for 5.95μm monodisperse polystyrene beads using FSC and SSC signals. Our platform shows promise for optical and fluidic miniaturization of flow cytometry systems. © 2017 SPIE.Item Open Access High-energy femtosecond photonic crystal fiber laser(2010) Lecaplain, C.; Ortaç, B.; MacHinet G.; Boullet J.; Baumgart, M.; Schreiber, T.; Cormier, E.; Hideur, A.We report the generation of high-energy high-peak power pulses in an all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers. The self-starting chirped-pulse fiber oscillator delivers 11 W of average power at 15:5 MHz repetition rate, resulting in 710 nJ of pulse energy. The output pulses are dechirped outside the cavity from 7 ps to nearly transform-limited duration of 300 fs, leading to pulse peak powers as high as 1:9 MW. Numerical simulations reveal that pulse shaping is dominated by the amplitude modulation and spectral filtering provided by a resonant semiconductor saturable absorber. © 2010 Optical Society of America.Item Open Access Pressure sensing using micromachined asymmetric integrated vertical coupler(IEEE, 2003) Kıyat, İsa; Kocabaş, Coşkun; Aydınlı, AtillaAnalysis of a novel pressure sensor based on a SOI asymmetric vertical coupler is presented. The integrated optical component is a coupler composed of a single mode low index waveguide and a thin silicon slab.Item Open Access Properties of a microjoule-class fiber oscillator mode-locked with a SESAM(IEEE, 2011) Lecaplain, C.; Ortac, Bülend; MacHinet G.; Boullet J.; Baumgartl, M.; Schreiber, T.; Cormier, E.; Hideur, A.Energy scaling of ultrafast Yb-doped fiber oscillators has experienced rapid progress largely driven by many applications that require high average power femtosecond pulses. The fundamental challenge for ultrafast fiber lasers relies on the control of excessive nonlinearity, which limits pulse energy. The development of all-normal dispersion laser cavities based on large-mode-area photonic crystal fibers (PCFs) has enabled significant energy scaling [1-3]. In particular, up to microjoule energy levels have been achieved from rod-type fiber-based oscillators [2-3]. In such lasers, pulse shaping is dominated by the strength of the mode-locking mechanism which determines the pulse properties. In this contribution, we report the generation of high-energy sub-picosecond pulses from a highly normal dispersion fiber laser featuring an Yb-doped rod-type PCF and a large-mode-area PCF [Fig.1(a)]. Passive mode-locking is achieved using saturable absorber mirrors (SAMs). We study the influence of the SAM parameters on performances obtained in this new class of fiber oscillators. The structures exhibit 20 % modulation depths and 500 fs relaxation time with resonant and antiresonant designs. The antiresonant SAM structures ensure absorption bandwidths 45 nm while the resonant structures exhibit 20 nm bandwidths. Stable mode locking with average powers as high as 15 μW at 15 MHz repetition rate, corresponding to microjoule energy level are obtained with all the structures. However, pulse properties and pulse shaping mechanism distinguish between resonant and antiresonant designs. Using a broadband antiresonant SAM leads to generation of highly-chirped pulses with 30 ps duration and 10 nm spectral width [Fig.1(b)]. The output pulses are extra-cavity dechirped down to 550 fs duration. By increasing the strength of the mode-locking mechanism through the combination of the SAM with the NPE process, we obtain shorter pulses with slightly boarder spectra. Indeed, the output pulse duration is decreased from 30 ps to 13 ps by adjusting the wave-plates settings. The dechirped pulse duration is then shortened to 450 fs. We note that the current laser performances are limited to 1 J by the available pump power. Using a resonant SAM structure, the output pulse duration is decreased to 7 ps [Fig.1(b)]. This pulse shortening results from the spectral filtering induced by the limited SAM bandwidth. All these results are in good agreement with numerical simulations which will be discussed in this communication. © 2011 IEEE.Item Open Access Sub-50 fs all-fiber Yb-doped laser with anomalous-dispersion photonic crystal fiber(IEEE, 2013) Zhang, Zewang; Cenel, C.; Hamid, R.; İlday, F. ÖmerAn intense research effort has been channelled into improving mode-locked Yb-fiber oscillators in recent years. Despite efforts in all-normal dispersion oscillators, dispersion management is evidently necessary to reach pulse durations below 50 fs. This is implemented most commonly with bulk optical components in Yb-doped fiber lasers. Increased robustness remains a valuable trait, for which all-fiber-integration is highly desirable. Photonic crystal fibers (PCF) with anomalous dispersion have small mode field diameters, enhancing nonlinear effects and usually are birefringent. The first mode-locked laser to incorporate a PCF was reported in 2002 [1]. However, mode-locking was not self-starting owing to the residual birefringence of the PCF Since then, a number of dispersion-managed Yb-doped fiber lasers using PCFs and all-fiber-integrated lasers have been reported. After 10 years, no all-fiber-integrated Yb-fiber laser has been demonstrated to support pulses below 60 fs [2]. © 2013 IEEE.Item Open Access Sub-picosecond microjoule-class fiber lasers(Optical Society of America, 2011) Lecaplain, C.; Ortaç, Bülend; MacHinet G.; Boullet J.; Baumgartl, M.; Schreiber, T.; Cormier, E.; Hideur, A.We study the impact of the mode-locking mechanism on the performances of a microjoule-class all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers. © 2011 OSA.