Browsing by Subject "Single layer"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Complementary spiral resonators for ultrawideband suppression of simultaneous switching noise in high-speed circuits(Electromagnetics Academy, 2014) Ghobadi, A.; Topalli K.; Bıyıklı, Necmi; Okyay, Ali KemalIn this paper, a novel concept for ultra-wideband simultaneous switching noise (SSN) mitigation in high-speed printed circuit boards (PCBs) is proposed. Using complementary spiral resonators (CSRs) etched on only a single layer of the power plane and cascaded co-centrically around the noise port, ultra-wideband SSN suppression by 30 dB is achieved in a frequency span ranging from 340MHz to beyond 10 GHz. By placing a slit in the co-centric rings, lower cut-off frequency is reduced to 150 MHz, keeping the rest of the structure unaltered. Finally, the power plane structure with modified complementary spiral resonators (MCSRs) is designed, fabricated, and evaluated experimentally. Measurement and simulation results are in well-agreement.Item Open Access Drag effect in double-layer dipolar fermi gases(IOP, 2014) Tanatar, Bilal; Renklioğlu, Başak; Öktel, M. ÖzgürWe consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas without any tunneling between the layers. The effective interactions describing screening and correlation effects between the dipoles in a single layer (intra-layer) and across the layers (interlayer) are modeled within the Hubbard approximation. We calculate the rate of momentum transfer between the layers when the gas in one layer has a steady flow. The momentum transfer induces a steady flow in the second layer which is assumed initially at rest. This is the drag effect familiar from double-layer semiconductor and graphene structures. Our calculations show that the momentum relaxation time has temperature dependence similar to that in layers with charged particles which we think is related to the contributions from the collective modes of the system.Item Open Access Femtosecond pulse generation from an extended cavity Cr4+: Forsterite laser using graphene on YAG(Optical Society of America, 2013) Baylam I.; Ozharar, S.; Natali Cizmeciyan, M.; Balcı, Osman; Pince, Erçağ; Kocabaş, Coşkun; Sennaroglu, A.A room temperature, multipass-cavity, femtosecond Cr4+:forsterite laser was modelocked with a single-layer graphene saturable absorber on a YAG substrate. The resonator produced nearly transform-limited 92 fs pulses near 1250 nm with 53 kW of peak power. © OSA 2013.Item Open Access Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index dielectric shells(Optical Society of American (OSA), 2009) Serebryannikov, A.E.; Usik P.V.; Özbay, EkmelStrong reduction of the scattering cross section is obtained for subwavelength dielectric and conducting cylinders without any magnetism for both TE and TM polarizations. The suggested approach is based on the use of Fabry-Perot type radial resonances, which can appear in single-layer, high-ε, isotropic, and homogeneous shells with the properly chosen parameters. Frequencies of the minima of the scattering cross section, which are associated with the cloaking, typically depend on whether TE or TM polarization is considered. In some cases, large-positive-ε and largenegative-e objects can be cloaked. In other cases, non-ideal multifrequency cloaking can be realized. ©2009 Optical Society of America.Item Open Access Synthesis of graphene on ultra-smooth copper foils for large area flexible electronics(IEEE, 2015) Polat, E. O.; Balcı, Osman; Kakenov, Nurbek; Kocabaş, Coşkun; Dahiya, R.This work demonstrates the synthesis of high quality, single layer graphene on commercially available ultra-smooth copper foils. The presented method will result in improved scalability of graphene based electronic and optical devices. Our approach is compatible with roll-to-roll printing as well as transfer printing of graphene layers on to a broad range of substrates including flexible and ultra-thin polymers. We propose that using commercially available ultra-smooth coppers provides scalable approach with the reduced variation of transport properties sourced from local graphene quality.Item Open Access Triangular metallic gratings for large absorption enhancement in thin film Si solar cells(Optical Society of American (OSA), 2012) Battal, E.; Yogurt, T.A.; Aygun L.E.; Okyay, Ali KemalWe estimate high optical absorption in silicon thin film photovoltaic devices using triangular corrugations on the back metallic contact. We computationally show 21.9% overall absorptivity in a 100-nmthick silicon layer, exceeding any reported absorptivity using single layer gratings placed on the top or the bottom, considering both transverse electric and transverse magnetic polarizations and a wide spectral range (280 - 1100 nm). We also show that the overall absorptivity of the proposed scheme is relatively insensitive to light polarization and the angle of incidence. We also discuss the implications of potential fabrication process variations on such a device. © 2012 Optical Society of America.