Browsing by Subject "Signal enhancement"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents(The Royal Society of Chemistry, 2011) Sulek, S.; Mammadov, B.; Mahcicek, D. I.; Sozeri, H.; Atalar, Ergin; Tekinay, A. B.; Güler, Mustafa O.Magnetic resonance imaging (MRI) attracts great attention in cellular and molecular imaging due to its non-invasive and multidimensional tomographic capabilities. Development of new contrast agents is necessary to enhance the MRI signal in tissues of interest. Superparamagnetic iron oxide nanoparticles (SPIONs) are used as contrast agents for signal enhancement as they have revealed extraordinary magnetic properties at the nanometre size and their toxicity level is very low compared to other commercial contrast agents. In this study, we developed a new method to functionalize the surface of SPIONs. Peptide amphiphile molecules are used to coat SPIONs non-covalently to provide water solubility and to enhance biocompatibility. Superparamagnetic properties of the peptide-SPION complexes and their ability as contrast agents are demonstrated. In vitro cell culture experiments reveal that the peptide-SPION complexes are biocompatible and are localized around the cells due to their peptide coating.Item Open Access SVD-based on-line exercise ECG signal orthogonalization(Institute of Electrical and Electronics Engineers, 1999-03) Acar, B.; Köymen, HayrettinAn orthogonalization method to eliminate unwanted signal components in standard 12-lead exercise electrocardiograms (ECG's) is presented in this work. A singular-value-decomposition-based algorithm is proposed to decompose the signal into two time-orthogonal subspaces; one containing the ECG and the other containing artifacts like baseline wander and electromyogram. The method makes use of redundancy in 12-lead ECG. The same method is also tested for reconstruction of a completely lost channel. The online implementation of the method is given. It is observed that the first two decomposed channels with highest energy are sufficient to reconstruct the ST-segment and J- point. The dimension of the signal space, on the other hand, does not exceed three. Data from 23 patients, with duration ranging from 9 to 21 min, are used.An orthogonalization method to eliminate unwanted signal components in standard 12-lead exercise electrocardiograms (ECG's) is presented in this work. A singular-value-decomposition-based algorithm is proposed to decompose the signal into two time-orthogonal subspaces; one containing the ECG and the other containing artifacts like baseline wander and electromyogram. The method makes use of redundancy in 12-lead ECG. The same method is also tested for reconstruction of a completely lost channel. The online implementation of the method is given. It is observed that the first two decomposed channels with highest energy are sufficient to reconstruct the ST-segment and J-point. The dimension of the signal space, on the other hand, does not exceed three. Data from 23 patients, with duration ranging from 9 to 21 min, are used.