SVD-based on-line exercise ECG signal orthogonalization

Date

1999-03

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Biomedical Engineering

Print ISSN

0018-9294

Electronic ISSN

Publisher

Institute of Electrical and Electronics Engineers

Volume

46

Issue

3

Pages

311 - 321

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

An orthogonalization method to eliminate unwanted signal components in standard 12-lead exercise electrocardiograms (ECG's) is presented in this work. A singular-value-decomposition-based algorithm is proposed to decompose the signal into two time-orthogonal subspaces; one containing the ECG and the other containing artifacts like baseline wander and electromyogram. The method makes use of redundancy in 12-lead ECG. The same method is also tested for reconstruction of a completely lost channel. The online implementation of the method is given. It is observed that the first two decomposed channels with highest energy are sufficient to reconstruct the ST-segment and J- point. The dimension of the signal space, on the other hand, does not exceed three. Data from 23 patients, with duration ranging from 9 to 21 min, are used.An orthogonalization method to eliminate unwanted signal components in standard 12-lead exercise electrocardiograms (ECG's) is presented in this work. A singular-value-decomposition-based algorithm is proposed to decompose the signal into two time-orthogonal subspaces; one containing the ECG and the other containing artifacts like baseline wander and electromyogram. The method makes use of redundancy in 12-lead ECG. The same method is also tested for reconstruction of a completely lost channel. The online implementation of the method is given. It is observed that the first two decomposed channels with highest energy are sufficient to reconstruct the ST-segment and J-point. The dimension of the signal space, on the other hand, does not exceed three. Data from 23 patients, with duration ranging from 9 to 21 min, are used.

Course

Other identifiers

Book Title

Citation