Browsing by Subject "Self assembled monolayers"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access An array of surface-enhanced Raman scattering substrates based on plasmonic lenses(Wiley, 2012-10-01) Kahraman, M.; Cakmakyapan, S.; Özbay, Ekmel; Culha, M.An array of ring-shaped holes is prepared from silver thin films using electron beam lithography. The optimal conditions for high performance as a surface-enhanced Raman scattering (SERS) substrate are investigated. Either the diameter of the hole (0.5, 1.0, 2.0, 3.0 and 4.0 μm) or the slit width (200, 300, 400, 500 and 600 nm) is varied. 4-Aminothiophenol (ATP) adsorbed on the structures as a self-assembled monolayer (SAM) is used as probe to evaluate the SERS performance of the generated structures. It is found that there is an optimal configuration for ring-shaped holes with a 3.0-μm diameter and 200-nm slit width. The SERS activity on this optimal lens configuration is found to be 13 times greater than that of the activity on the silver thin film. An array of these structures at this optimal configuration can easily be constructed and used in a range of SERS-based sensing applications. An array of ring-shaped holes is prepared from silver thin films using electron beam lithography. The optimal conditions for high performance as a surface-enhanced Raman scattering (SERS) substrate are investigated. It is found that there is an optimal configuration for ring-shaped holes with a 3.0-μm diameter and 200-nm slit with. The SERS activity on this optimal lens configuration is found to be 13 times greater than that of the activity on the silver thin film.Item Open Access Skin-like self-assembled monolayers on InAs / GaSb superlattice photodetectors(IOP Institute of Physics Publishing, 2012) Salihoglu, O.; Muti, A.; Kutluer, K.; Tansel, T.; Turan, R.; Aydınlı, AtillaWe report on the effects of monolayer (ML) thick skin-like octadecanethiol (ODT, CH 3[CH 2] 17SH) on type-II InAs/GaSb MWIR photodetectors. Circumventing the ageing effects of conventional sulfur compounds, we use ODT, a self-assembling, long molecular chain headed with a sulfur atom. Photodiodes coated with and without the self-assembled monolayer (SAM) ODT were compared for their electrical and optical performances. For ODT-coated diodes, the dark current density was improved by two orders of magnitude at 77K under 100mV bias. The zero bias responsivity and detectivity were 1.04AW 1 and 2.15 × 10 13 Jones, respectively, at 4μm and 77K. The quantum efficiency was determined to be 37% for a cutoff wavelength of 5.1μm.Item Open Access Thiol passivation of MWIR Type II superlattice photodetectors(SPIE, 2013) Salihoğlu, Ömer; Muti, Abdullah; Aydınlı, AtillaPoor passivation on photodetectors can result in catastrophic failure of the device. Abrupt termination of mesa side walls during pixel definition generates dangling bonds that lead to inversion layers and surface traps leading to surface leakage currents that short circuit diode action. Good passivation, therefore, is critical in the fabrication of high performance devices. Silicondioxide has been the main stay of passivation for commercial photodetectors, deposited at high temperatures and high RF powers using plasma deposition techniques. In photodetectors based on III-V compounds, sulphur passivation has been shown to replace oxygen and saturate the dangling bonds. Despite its effectiveness, it degrades over time. More effort is required to create passivation layers which eliminate surface leakage current. In this work, we propose the use of sulphur based octadecanethiol (ODT), CH3(CH2)17SH, as a passivation layer for the InAs/GaSb superlattice photodetectors that acts as a self assembled monolayer (SAM). ODT SAMs consist of a chain of 18 carbon atoms with a sulphur atom at its head. ODT Thiol coating is a simple process that consist of dipping the sample into the solution for a prescribed time. Excellent electrical performance of diodes tested confirm the effectiveness of the sulphur head stabilized by the intermolecular interaction due to van der Walls forces between the long chains of ODT SAM which results in highly stable ultrathin hydrocarbon layers without long term degradation. © 2013 SPIE.