BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Search result clustering"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A new approach to search result clustering and labeling
    (Springer, Berlin, Heidelberg, 2011) Türel, Anıl; Can, Fazlı
    Search engines present query results as a long ordered list of web snippets divided into several pages. Post-processing of retrieval results for easier access of desired information is an important research problem. In this paper, we present a novel search result clustering approach to split the long list of documents returned by search engines into meaningfully grouped and labeled clusters. Our method emphasizes clustering quality by using cover coefficient-based and sequential k-means clustering algorithms. A cluster labeling method based on term weighting is also introduced for reflecting cluster contents. In addition, we present a new metric that employs precision and recall to assess the success of cluster labeling. We adopt a comparative strategy to derive the relative performance of the proposed method with respect to two prominent search result clustering methods: Suffix Tree Clustering and Lingo. Experimental results in the publicly available AMBIENT and ODP-239 datasets show that our method can successfully achieve both clustering and labeling tasks. © 2011 Springer-Verlag Berlin Heidelberg.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A new approach to search result clustering and labeling
    (2011) Türel, Anıl
    Search engines present query results as a long ordered list of web snippets divided into several pages. Post-processing of information retrieval results for easier access to the desired information is an important research problem. A post-processing technique is clustering search results by topics and labeling these groups to reflect the topic of each cluster. In this thesis, we present a novel search result clustering approach to split the long list of documents returned by search engines into meaningfully grouped and labeled clusters. Our method emphasizes clustering quality by using cover coefficient and sequential k-means clustering algorithms. Cluster labeling is crucial because meaningless or confusing labels may mislead users to check wrong clusters for the query and lose extra time. Additionally, labels should reflect the contents of documents within the cluster accurately. To be able to label clusters effectively, a new cluster labeling method based on term weighting is introduced. We also present a new metric that employs precision and recall to assess the success of cluster labeling. We adopt a comparative evaluation strategy to derive the relative performance of the proposed method with respect to the two prominent search result clustering methods: Suffix Tree Clustering and Lingo. Moreover, we perform the experiments using the publicly available Ambient and ODP-239 datasets. Experimental results show that the proposed method can successfully achieve both clustering and labeling tasks.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback