BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Scientific visualization"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Quick clusters: a GPU-Parallel partitioning for efficient path tracing of unstructured volumetric grids
    (Institute of Electrical and Electronics Engineers, 2022-09-22) Morrical, Nate; Şahistan, Alper; Uğur, Güdükbay; Wald, Ingo; Pascucci, Valerio
    We propose a simple yet effective method for clustering finite elements to improve preprocessing times and rendering performance of unstructured volumetric grids without requiring auxiliary connectivity data. Rather than building bounding volume hierarchies (BVHs) over individual elements, we sort elements along with a Hilbert curve and aggregate neighboring elements together, improving BVH memory consumption by over an order of magnitude. Then to further reduce memory consumption, we cluster the mesh on the fly into sub-meshes with smaller indices using a series of efficient parallel mesh re-indexing operations. These clusters are then passed to a highly optimized ray tracing API for point containment queries and ray-cluster intersection testing. Each cluster is assigned a maximum extinction value for adaptive sampling, which we rasterize into non-overlapping view-aligned bins allocated along the ray. These maximum extinction bins are then used to guide the placement of samples along the ray during visualization, reducing the number of samples required by multiple orders of magnitude (depending on the dataset), thereby improving overall visualization interactivity. Using our approach, we improve rendering performance over a competitive baseline on the NASA Mars Lander dataset from 6× (1 frame per second (fps) and 1.0 M rays per second (rps) up to now 6 fps and 12.4 M rps , now including volumetric shadows) while simultaneously reducing memory consumption by 3× (33 GB down to 11 GB) and avoiding any offline preprocessing steps, enabling high-quality interactive visualization on consumer graphics cards. Then by utilizing the full 48 GB of an RTX 8000, we improve the performance of Lander by 17 × (1 fps up to 17 fps, 1.0 M rps up to 35.6 M rps) .
  • Loading...
    Thumbnail Image
    ItemOpen Access
    State-of-the-art in large-scale volume visualization beyond structured data
    (Eurographics and John Wiley & Sons Ltd., 2023-06-27) Sarton, J.; Zellmann, S.; Demirci, Serkan; Güdükbay, Uğur; Alexandre-Barff, W.; Lucas, L.; Dischler, J. M.; Wesner, S.; Wald, I.; Alliez, Pierre; Wimmer, Michael
    Volume data these days is usually massive in terms of its topology, multiple fields, or temporal component. With the gap between compute and memory performance widening, the memory subsystem becomes the primary bottleneck for scientific volume visualization. Simple, structured, regular representations are often infeasible because the buses and interconnects involved need to accommodate the data required for interactive rendering. In this state-of-the-art report, we review works focusing on large-scale volume rendering beyond those typical structured and regular grid representations. We focus primarily on hierarchical and adaptive mesh refinement representations, unstructured meshes, and compressed representations that gained recent popularity. We review works that approach this kind of data using strategies such as out-of-core rendering, massive parallelism, and other strategies to cope with the sheer size of the ever-increasing volume of data produced by today's supercomputers and acquisition devices. We emphasize the data management side of large-scale volume rendering systems and also include a review of tools that support the various volume data types discussed.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Visualization of large Non-trivially partitioned unstructured data with native distribution on high-performance computing systems
    (IEEE, 2024-01-15) Sahistan, Alper; Demirci, Serkan; Wald, Ingo; Zellmann, Stefan; Barbosa, João; Morrical, Nate; Güdükbay, Uğur
    Interactively visualizing large finite element simulation data on High-Performance Computing (HPC) systems poses several difficulties. Some of these relate to unstructured data, which, even on a single node, is much more expensive to render compared to structured volume data. Worse yet, in the data parallel rendering context, such data with highly non-convex spatial domain boundaries will cause rays along its silhouette to enter and leave a given rank's domains at different distances. This straddling, in turn, poses challenges for both ray marching, which usually assumes successive elements to share a face, and compositing, which usually assumes a single fragment per pixel per rank. We holistically address these issues using a combination of three inter-operating techniques: first, we use a highly optimized GPU ray marching technique that, given an entry point, can march a ray to its exit point with highperformance by exploiting an exclusive-or (XOR) based compaction scheme. Second, we use hardware-accelerated ray tracing to efficiently find the proper entry points for these marching operations. Third, we use a “deep” compositing scheme to properly handle cases where different ranks' ray segments interleave in depth. We use GPU-to-GPU remote direct memory access (RDMA) to achieve interactive frame rates of 10-15 frames per second and higher for our motivating use case, the Fun3D NASA Mars Lander.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback