Visualization of large Non-trivially partitioned unstructured data with native distribution on high-performance computing systems

Series

Abstract

Interactively visualizing large finite element simulation data on High-Performance Computing (HPC) systems poses several difficulties. Some of these relate to unstructured data, which, even on a single node, is much more expensive to render compared to structured volume data. Worse yet, in the data parallel rendering context, such data with highly non-convex spatial domain boundaries will cause rays along its silhouette to enter and leave a given rank's domains at different distances. This straddling, in turn, poses challenges for both ray marching, which usually assumes successive elements to share a face, and compositing, which usually assumes a single fragment per pixel per rank. We holistically address these issues using a combination of three inter-operating techniques: first, we use a highly optimized GPU ray marching technique that, given an entry point, can march a ray to its exit point with highperformance by exploiting an exclusive-or (XOR) based compaction scheme. Second, we use hardware-accelerated ray tracing to efficiently find the proper entry points for these marching operations. Third, we use a “deep” compositing scheme to properly handle cases where different ranks' ray segments interleave in depth. We use GPU-to-GPU remote direct memory access (RDMA) to achieve interactive frame rates of 10-15 frames per second and higher for our motivating use case, the Fun3D NASA Mars Lander.

Source Title

IEEE Transactions on Visualization and Computer Graphics

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English