Browsing by Subject "Rigged Hilbert spaces"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access On generalised triplets of Hilbert spaces(Editura Academiei Romane, 2020) Cojuhari, P.; Gheondea, AurelianWe compare the concept of triplet of closely embedded Hilbert spaces with that of generalised triplet of Hilbert spaces in the sense of Berezanskii by showing when they coincide, when they are different, and when starting from one of them one can naturally produce the other one that essentially or fully coincides.Item Open Access Triplets of closely embedded Dirichlet type spaces on the unit polydisc(Birkhaeuser Science, 2013) Cojuhari, P.; Gheondea, A.We propose a general concept of triplet of Hilbert spaces with closed embeddings, instead of continuous ones, and we show how rather general weighted L2 spaces yield this kind of generalized triplets of Hilbert spaces for which the underlying spaces and operators can be explicitly calculated. Then we show that generalized triplets of Hilbert spaces with closed embeddings can be naturally associated to any pair of Dirichlet type spaces Dα(DN) of holomorphic functions on the unit polydisc DN and we explicitly calculate the associated operators in terms of reproducing kernels and radial derivative operators. We also point out a rigging of the Hardy space H2(DN) through a scale of Dirichlet type spaces and Bergman type spaces. © 2012 Springer Basel.Item Open Access Triplets of closely embedded Hilbert spaces(Springer, 2014) Cojuhari, P.; Gheondea, A.We obtain a general concept of triplet of Hilbert spaces with closed (unbounded) embeddings instead of continuous (bounded) ones. We provide a model and an abstract theorem as well for a triplet of closely embedded Hilbert spaces associated to positive selfadjoint operator H, that is called the Hamiltonian of the system, which is supposed to be one-to-one but may not have a bounded inverse. Existence and uniqueness results, as well as left-right symmetry, for these triplets of closely embedded Hilbert spaces are obtained. We motivate this abstract theory by a diversity of problems coming from homogeneous or weighted Sobolev spaces, Hilbert spaces of holomorphic functions, and weighted L2 spaces. An application to weak solutions for a Dirichlet problem associated to a class of degenerate elliptic partial differential equations is presented. In this way, we propose a general method of proving the existence of weak solutions that avoids coercivity conditions and Poincaré–Sobolev type inequalities. © 2014, Springer Basel.