Triplets of closely embedded Hilbert spaces

Date

2014

Authors

Cojuhari, P.
Gheondea, A.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Integral Equations and Operator Theory

Print ISSN

0378-620X

Electronic ISSN

1420-8989

Publisher

Springer

Volume

81

Issue

1

Pages

1 - 33

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
4
views
10
downloads

Series

Abstract

We obtain a general concept of triplet of Hilbert spaces with closed (unbounded) embeddings instead of continuous (bounded) ones. We provide a model and an abstract theorem as well for a triplet of closely embedded Hilbert spaces associated to positive selfadjoint operator H, that is called the Hamiltonian of the system, which is supposed to be one-to-one but may not have a bounded inverse. Existence and uniqueness results, as well as left-right symmetry, for these triplets of closely embedded Hilbert spaces are obtained. We motivate this abstract theory by a diversity of problems coming from homogeneous or weighted Sobolev spaces, Hilbert spaces of holomorphic functions, and weighted L2 spaces. An application to weak solutions for a Dirichlet problem associated to a class of degenerate elliptic partial differential equations is presented. In this way, we propose a general method of proving the existence of weak solutions that avoids coercivity conditions and Poincaré–Sobolev type inequalities. © 2014, Springer Basel.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)