Browsing by Subject "Relative stabilities"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Fe promoted NOx storage materials: structural properties and NOx uptake(American Chemical Society, 2010) Kayhan, E.; Andonova, S. M.; Şentürk, G. S.; Chusuei, C. C.; Ozensoy, E.Fe promoted NOx storage materials were synthesized in the form of FeOx/BaO/Al2O3 ternary oxides with varying BaO (8 and 20 wt %) and Fe (5 and 10 wt %) contents. Synthesized NOx storage materials were investigated via TEM, EELS, BET, FTIR, TPD, XRD, XPS, and Raman spectroscopy, and the results were compared with the conventional BaO/Al2O3 NOx storage system. Our results suggest that the introduction of Fe in the BaO/Al2O3 system leads to the formation of additional NOx storage sites which store NOx mostly in the form of bidentate nitrates. NO2 adsorption experiments at 323 K via FTIR indicate that, particularly in the early stages of the NOx uptake, the NOx storage mechanism is significantly altered in the presence of Fe sites where a set of new surface nitrosyl and nitrite groups were detected on the Fe sites and the surface oxidation of nitrites to nitrates is significantly hindered with respect to the BaO/Al2O3 system. Evidence for the existence of both Fe3+ as well as reduced Fe2+/(3-x)+ sites on the freshly pretreated materials was detected via EELS, FTIR, Raman, and XRD experiments. The influence of the Fe sites on the structural properties of the synthesized materials was also studied by performing ex situ annealing protocols within 323-1273 K followed by XRD and Raman experiments where the temperature dependent changes in the morphology and the composition of the surface domains were analyzed in detail. On the basis of the TPD data, it was found that the relative stability of the stored NOx species is influenced by the morphology of the Ba and Fe containing NOx-storage domains. The relative stabilities of the investigated NOx species were found to increase in the following order: N2O3/NO+ < nitrates on γ-Al2O3 < surface nitrates on BaO < bidentate nitrates on FeOx sites < bulk nitrates on BaO.Item Open Access Fine-tuning the dispersion and the mobility of BaO domains on NO x storage materials via TiO2 anchoring sites(American Chemical Society, 2010) Andonova, S. M.; Şentürk, G. S.; Ozensoy, E.In an attempt to control the surface dispersion and the mobility of BaO domains on NOx storage materials, TiO2/TiOx anchoring sites were introduced on/inside the conventional γ-Al 2O3 support matrix. BaO/TiO2/Al 2O3 ternary oxide materials were synthesized via two different sol-gel preparation techniques, with varying surface compositions and morphologies. The synthesized NOx storage materials were studied via XRD, Raman spectroscopy, BET surface area analysis, TPD, XPS, SEM, EDX-mapping, and in situ FTIR spectroscopy of adsorbed NO2. NOx uptake properties of the BaO/TiO2/Al2O3 materials were found to be strongly influenced by the morphology and the surface structure of the TiO2/TiOx domains. An improved Ba surface dispersion was observed for the BaO/TiO2/Al2O3 materials synthesized via the coprecipitation of alkoxide precursors, which was found to originate mostly from the increased fraction of accessible TiO 2/TiOx sites on the surface. These TiO2/ TiOx sites function as strong anchoring sites for surface BaO domains and can be tailored to enhance surface dispersion of BaO. TPD experiments suggested the presence of at least two different types of NOx species adsorbed on the TiO2/TiOx sites, with distinctively different thermal stabilities. The relative stability of the NOx species adsorbed on the BaO/TiO2/Al2O3 system was found to increase in the following order: NO+/N2O 3 on alumina ≪ nitrates on alumina < surface nitrates on BaO < bridged/bidentate nitrates on large/isolated TiO2 clusters < bulk nitrates on BaO on alumina surface and bridged/bidentate nitrates on TiO2 crystallites homogenously distributed on the surface < bulk nitrates on the BaO sites located on the TiO2 domains. © 2010 American Chemical Society.Item Open Access Theoretical and spectroscopic investigations on the structure and bonding in B-C-N thin films(2009) Bengu, E.; Genisel, M. F.; Gulseren, O.; Ovali, R.In this study, we have synthesized boron, carbon, and nitrogen containing films using RF sputter deposition. We investigated the effects of deposition parameters on the chemical environment of boron, carbon, and nitrogen atoms inside the films. Techniques used for this purpose were grazing incidence reflectance-Fourier-transform infrared spectroscopy (GIR-FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). GIR-FTIR experiments on the B-C-N films deposited indicated presence of multiple features in the 600 to 1700 cm- 1 range for the infrared (IR) spectra. Analysis of the IR spectra, XPS and the corresponding EELS data from the films has been done in a collective manner. The results from this study suggested even under nitrogen rich synthesis conditions carbon atoms in the B-C-N films prefer to be surrounded by other carbon atoms rather than boron and/or nitrogen. Furthermore, we have observed a similar behavior in the chemistry of B-C-N films deposited with increasing substrate bias conditions. In order to better understand these results, we have compared and evaluated the relative stability of various nearest-neighbor and structural configurations of carbon atoms in a single BN sheet using DFT calculations. These calculations also indicated that structures and configurations that increase the relative amount of C-C bonding with respect to B-C and/or C-N were energetically favorable than otherwise. As a conclusion, carbon tends to phase-segregate in to carbon clusters rather than displaying a homogeneous distribution for the films deposited in this study under the deposition conditions studied.