Browsing by Subject "Recognition rates"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Cepstrum based feature extraction method for fungus detection(SPIE, 2011) Yorulmaz, Onur; Pearson, T.C.; Çetin, A. EnisIn this paper, a method for detection of popcorn kernels infected by a fungus is developed using image processing. The method is based on two dimensional (2D) mel and Mellin-cepstrum computation from popcorn kernel images. Cepstral features that were extracted from popcorn images are classified using Support Vector Machines (SVM). Experimental results show that high recognition rates of up to 93.93% can be achieved for both damaged and healthy popcorn kernels using 2D mel-cepstrum. The success rate for healthy popcorn kernels was found to be 97.41% and the recognition rate for damaged kernels was found to be 89.43%. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).Item Open Access Detection of fungal damaged popcorn using image property covariance features(Elsevier, 2012) Yorulmaz, O.; Pearson, T. C.; Çetin, A.Covariance-matrix-based features were applied to the detection of popcorn infected by a fungus that causes a symptom called " blue-eye" . This infection of popcorn kernels causes economic losses due to the kernels' poor appearance and the frequently disagreeable flavor of the popped kernels. Images of kernels were obtained to distinguish damaged from undamaged kernels using image-processing techniques. Features for distinguishing blue-eye-damaged from undamaged popcorn kernel images were extracted from covariance matrices computed using various image pixel properties. The covariance matrices were formed using different property vectors that consisted of the image coordinate values, their intensity values and the first and second derivatives of the vertical and horizontal directions of different color channels. Support Vector Machines (SVM) were used for classification purposes. An overall recognition rate of 96.5% was achieved using these covariance based features. Relatively low false positive values of 2.4% were obtained which is important to reduce economic loss due to healthy kernels being discarded as fungal damaged. The image processing method is not computationally expensive so that it could be implemented in real-time sorting systems to separate damaged popcorn or other grains that have textural differences.Item Open Access Image feature extraction using 2D mel-cepstrum(IEEE, 2010) Çakır, Serdar; Çetin, A. EnisIn this paper, a feature extraction method based on two-dimensional (2D) mel-cepstrum is introduced. Feature matrices resulting from the 2D mel-cepstrum, Fourier LDA approach and original image matrices are individually applied to the Common Matrix Approach (CMA) based face recognition system. For each of these feature extraction methods, recognition rates are obtained in the AR face database, ORL database and Yale database. Experimental results indicate that recognition rates obtained by the 2D mel-cepstrum method is superior to the recognition rates obtained using Fourier LDA approach and raw image matrices. This indicates that 2D mel-cepstral analysis can be used in image feature extraction problems. © 2010 IEEE.Item Open Access Mel-cepstral methods for image feature extraction(IEEE, 2010) Çakır, Serdar; Çetin, A. EnisA feature extraction method based on two-dimensional (2D) mel-cepstrum is introduced. The concept of one-dimensional (1D) mel-cepstrum which is widely used in speech recognition is extended to 2D in this article. Feature matrices resulting from the 2D mel-cepstrum, Fourier LDA, 2D PCA and original image matrices are converted to feature vectors and individually applied to a Support Vector Machine (SVM) classification engine for comparison. The AR face database, ORL database, Yale database and FRGC version 2 database are used in experimental studies, which indicate that recognition rates obtained by the 2D mel-cepstrum method is superior to the recognition rates obtained using Fourier LDA, 2D PCA and ordinary image matrix based face recognition. This indicates that 2D mel-cepstral analysis can be used in image feature extraction problems. © 2010 IEEE.Item Open Access Two-dimensional Mellin and mel-cepstrum for image feature extraction(Springer, Dordrecht, 2010) Çakır, Serdar; Çetin, A. EnisAn image feature extraction method based on two-dimensional (2D)Mellin cepstrum is introduced. The concept of one-dimensional (1D) melcepstrum which is widely used in speech recognition is extended to two-dimensions both using the ordinary 2D Fourier Transform and the Mellin transform in this article. The resultant feature matrices are applied to two different classifiers (Common Matrix Approach and Support Vector Machine) to test the performance of the melcepstrum and Mellincepstrum based features. Experimental studies indicate that recognition rates obtained by the 2D melcepstrum based method are superior to the recognition rates obtained using 2D PCA and ordinary image matrix based face recognition in both classifiers. © 2011 Springer Science+Business Media B.V.