Mel-cepstral methods for image feature extraction
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
A feature extraction method based on two-dimensional (2D) mel-cepstrum is introduced. The concept of one-dimensional (1D) mel-cepstrum which is widely used in speech recognition is extended to 2D in this article. Feature matrices resulting from the 2D mel-cepstrum, Fourier LDA, 2D PCA and original image matrices are converted to feature vectors and individually applied to a Support Vector Machine (SVM) classification engine for comparison. The AR face database, ORL database, Yale database and FRGC version 2 database are used in experimental studies, which indicate that recognition rates obtained by the 2D mel-cepstrum method is superior to the recognition rates obtained using Fourier LDA, 2D PCA and ordinary image matrix based face recognition. This indicates that 2D mel-cepstral analysis can be used in image feature extraction problems. © 2010 IEEE.