Browsing by Subject "Receptors, Androgen"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Endothelial progenitor cells display clonal restriction in multiple myeloma(BioMed Central Ltd., 2006) Braunstein, M.; Özçelik, T.; Baǧişlar, S.; Vakil, V.; Smith, E. L. P.; Dai, K.; Akyerli, C. B.; Batuman O. A.Background: In multiple myeloma (MM), increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs) contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI) patterns in female patients by a human androgen receptor assay (HUMARA). In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH) gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. Methods: A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (VH). Results: In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele) in 64% (n = 7). In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele). In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with VH primers resulted in amplification of the same product in EPCs and bone marrow cells in 71 % (n = 5) of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status, unlike patients whose EPCs had random XCI. Conclusion: Our results suggest that EPCs in at least a substantial subpopulation of MM patients are related to the neoplastic clone and that this is an important mechanism for upregulation of tumor neovascularization in MM. © 2006 Braunstein et al; licensee BioMed Central Ltd.Item Open Access Extremely skewed X-chromosome inactivation patterns in women with recurrent spontaneous abortion(Wiley-Blackwell Publishing Asia, 2006) Bagislar, S.; Ustuner, I.; Cengiz, B.; Soylemez, F.; Akyerli, C. B.; Ceylaner, S.; Ceylaner, G.; Acar, A.; Ozcelik, T.Background: The role of extremely skewed X-chromosome inactivation (XCI) has been questioned in the pathogenesis of recurrent spontaneous abortion (RSA) but the results obtained were conflicting. Aims: We therefore investigated the XCI patterns in peripheral blood DNA obtained from 80 patients who had RSA and 160 age-matched controls. Methods: Pregnancy history, age, karyotype, and disease information was collected from all subjects. The methylation status of a highly polymorphic cytosine-adenine-guanine repeat in the androgen-receptor (AR) gene was determined by use of methylation-sensitive restriction enzyme HpaII and polymerase chain reaction. Results: Skewed XCI (> 8 5% skewing) was observed in 13 of the 62 patients informative for the AR polymorphism (20.9%), and eight of the 124 informative controls (6.4%) (P = 0.0069; χ 2 test). More importantly, extremely skewed XCI, defined as > 90% inactivation of one allele, was present in 11 (17.7%) patients, and in only two controls (P = 0.0002; χ 2 test). Conclusions: These results support the interpretation that disturbances in XCI mosaicism may be involved in the pathogenesis of RSA.Item Open Access Increased frequency of extremely skewed X chromosome inactivation in juvenile idiopathic arthritis(John Wiley & Sons, Inc., 2009) Uz, E.; Mustafa, C.; Topaloglu, R.; Bilginer, Y.; Dursun, A.; Kasapcopur, O.; Ozen, S.; Bakkaloglu, A.; Ozcelik, T.Objective. Juvenile idiopathic arthritis (JIA) is a childhood rheumatic disease of unknown etiology. Two subgroups of JIA, i.e., oligoarticular and polyarticular, are thought to have an autoimmune component, and show a higher female:male ratio. Skewed X chromosome inactivation (XCI) has previously been shown to be associated with scleroderma and autoimmune thyroiditis, 2 autoimmune disorders occurring predominantly in females. This study was undertaken to extend the analysis to the pediatric age group and to determine the XCI profiles of patients with JIA.Item Open Access MST1 is a multifunctional caspase-independent inhibitor of androgenic signaling(2011) Cinar, B.; Collak F.K.; Lopez, D.; Akgul, S.; Mukhopadhyay, N.K.; Kilicarslan, M.; Gioeli, D.G.; Freeman, M.R.The MST1 serine - threonine kinase, a component of the RASSF1-LATS tumor suppressor network, is involved in cell proliferation and apoptosis and has been implicated in cancer. However, the physiologic role of MST1 in prostate cancer (PCa) is not well understood. Here, we investigated the possibility of a biochemical and functional link between androgen receptor (AR) and MST1 signaling. We showed that MST1 forms a protein complex with AR and antagonizes AR transcriptional activity as shown by coimmunoprecipitation (co-IP), promoter reporter analysis, and molecular genetic methods. In vitro kinase and site-specific mutagenesis approaches indicate that MST1 is a potent AR kinase; however, the kinase activity of MST1 and its proapoptotic functions were shown not to be involved in inhibition of AR. MST1 was also found in AR - chromatin complexes, and enforced expression of MST1 reduced the binding of AR to a well-characterized, androgen-responsive region within the prostate-specific antigen promoter. MST1 suppressed PCa cell growth in vitro and tumor growth in mice. Because MST1 is also involved in regulating the AKT1 pathway, this kinase may be an important new link between androgenic and growth factor signaling and a novel therapeutic target in PCa. ©2011 AACR.