Browsing by Subject "Rate distortion theory"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Estimation of depth fields suitable for video compression based on 3-D structure and motion of objects(Institute of Electrical and Electronics Engineers, 1998-06) Alatan, A. A.; Onural, L.Intensity prediction along motion trajectories removes temporal redundancy considerably in video compression algorithms. In three-dimensional (3-D) object-based video coding, both 3-D motion and depth values are required for temporal prediction. The required 3-D motion parameters for each object are found by the correspondence-based E-matrix method. The estimation of the correspondences - two-dimensional (2-D) motion field - between the frames and segmentation of the scene into objects are achieved simultaneously by minimizing a Gibbs energy. The depth field is estimated by jointly minimizing a defined distortion and bitrate criterion using the 3-D motion parameters. The resulting depth field is efficient in the rate-distortion sense. Bit-rate values corresponding to the lossless encoding of the resultant depth fields are obtained using predictive coding; prediction errors are encoded by a Lempel-Ziv algorithm. The results are satisfactory for real-life video scenes.Item Open Access Object-based 3-d motion and structure analysis for video coding applications(1997) Alatan, A. AydinNovel 3-D motion analysis tools, which can be used in object-based video codecs, are proposed. In these tools, the movements of the objects, which are observed through 2-D video frames, are modeled in 3-D space. Segmentation of 2-D frames into objects and 2-D dense motion vectors for each object are necessary as inputs for the proposed 3-D analysis. 2-D motion-based object segmentation is obtained by Gibbs formulation; the initialization is achieved by using a fast graph-theory based region segmentation algorithm which is further improved to utilize the motion information. Moreover, the same Gibbs formulation gives the needed dense 2-D motion vector field. The formulations for the 3-D motion models are given for both rigid and non- rigid moving objects. Deformable motion is modeled by a Markov random field which permits elastic relations between neighbors, whereas, rigid 3-D motion parameters are estimated using the E-matrix method. Some improvements on the E-matrix method are proposed to make this algorithm more robust to gross errors like the consequence of incorrect segmentation of 2-D correspondences between frames. Two algorithms are proposed to obtain dense depth estimates, which are robust to input errors and suitable for encoding, respectively. While the former of these two algorithms gives simply a MAP estimate, the latter uses rate-distortion theory. Finally, 3-D motion models are further utilized for occlusion detection and motion compensated temporal interpolation, and it is observed that for both applications 3-D motion models have superiority over their 2-D counterparts. Simulation results on artificial and real data show the advantages of the 3-D motion models in object-based video coding algorithms.