Browsing by Subject "Quantum computers"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths(American Institute of Physics Inc., 2017) Emani, N. K.; Khaidarov, E.; Paniagua-Domínguez, R.; Fu, Y. H.; Valuckas, V.; Lu S.; Zhang X.; Tan S.T.; Demir, Hilmi Volkan; Kuznetsov, A. I.The dielectric nanophotonics research community is currently exploring transparent material platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transparent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nanophotonic applications. Here, we present the design and experimental realization of high efficiency beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue wavelength range of 430-470 nm. This nanophotonic platform of GaN shows the way to off- and on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths common to many atomic quantum emitters such as Ca+ and Sr+ ions.Item Open Access Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic aharonov-bohm loops(World Scientific Publishing Co., 2005) Kulik, I. O.Fixed-number-of-electron mesoscopic or macromolecular conducting ring is shown to support persistent currents due to Aharonov-Bohm flux, and the "spontaneous" persistent currents without the flux when structural transformation in the ring is blocked by strong coupling to the externally azimuthal-symmetric environment. In the free-standing macromolecular ring, symmetry breaking removes the azimuthal periodicity which however is further restored at the increasing field. Three-site ring with one or three electrons represent an interesting quantum system which can serve as a qubit (quantum bit of information) and a qugate (quantum logical gate). © 2005 by World Scientific Publishing Co. Pte. Ltd.Item Open Access Quantum information processing in solid states: A critique of two-level approximation(World Scientific Publishing Co., 2005) Savran K.; Hakioğlu T.We examine the effect of multilevels on decoherence and dephasing properties of a quantum system consisting of a non-ideal two level subspace, identified as the qubit and a finite set of higher energy levels above this qubit subspace. The whole system is under interaction with an environmental bath through a Caldeira-Leggett type coupling. The model that we use is an rf-SQUID under macroscopic quantum coherence and coupled inductively to a flux noise characterized by an environmental spectrum. The model interaction can generate dipole couplings which can be appreciable for a number of high levels. The decoherence properties of the qubit subspace is examined numerically using the master equation formalism of the system’s reduced density matrix. We numerically examine the relaxation and dephasing times as the environmental frequency spectrum, and the multilevel system parameters are varied at zero temperature. We observe that, these time scales receive contribution from all available energies in the noise spectrum (even well above the system’s energy scales) stressing the dominant role played by the non-resonant (virtual) transitions. The relaxation and dephasing times calculated, strongly depend on the number of levels within the range of levels for which appreciable couplings are produced. Under the influence of these effects, we remark that the validity of the two level approximation is restricted not by the temperature but by these dipole couplings as well as the availability of the environmental modes at low temperatures. © 2005 by World Scientific Publishing Co. Pte. Ltd.Item Open Access Semiclassical quantum computation solutions to the count to infinity problem: a brief discussion(World Scientific Publishing, 2005) Gökden, BurçIn this paper we briefly define distance vector routingalgorithms, their advantages and possible drawbacks. On thesepossible drawbacks, currently widely used methods split horizonand poisoned reverse are defined and compared. The count toinfinity problem is specified and classified to be a haltingproblem, and a proposition stating that entangled states used inquantum computation can be used to handle this problem isexamined. Several solutions to this problem by using entangledstates are proposed and a very brief introduction to entangledstates is presented.Item Open Access Study of junction and bias parameters in readout of phase qubits(2012) Zandi H.; Safaei, S.; Khorasani, S.; Fardmanesh, M.The exact numerical solution of the nonlinear Ginzburg-Landau equation for Josephson junctions is obtained, from which the precise nontrivial current density and effective potential of the Josephson junctions are found. Based on the resulting potential well, the tunneling probabilities of the associated bound states are computed which are in complete agreement with the reported experimental data. The effects of junction and bias parameters such as thickness of the insulating barrier, cross sectional area, bias current, and magnetic field are fully investigated using a successive perturbation approach. We define and compute figures of merit for achieving optimal operation of phase qubits and measurements of the corresponding states. Particularly, it is found that Josephson junctions with thicker barriers yield better performance in measurements of phase qubits. The variations of characteristic parameters such as life time of the states due to the above considered parameters are also studied and discussed to obtain the appropriate configuration setup.