Browsing by Subject "Power management"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks(Elsevier BV, 2016) Deniz, F.; Bagci, H.; Korpeoglu, I.; Yazıcı A.This paper introduces an adaptive, energy-aware and distributed fault-tolerant topology-control algorithm, namely the Adaptive Disjoint Path Vector (ADPV) algorithm, for heterogeneous wireless sensor networks. In this heterogeneous model, we have resource-rich supernodes as well as ordinary sensor nodes that are supposed to be connected to the supernodes. Unlike the static alternative Disjoint Path Vector (DPV) algorithm, the focus of ADPV is to secure supernode connectivity in the presence of node failures, and ADPV achieves this goal by dynamically adjusting the sensor nodes' transmission powers. The ADPV algorithm involves two phases: a single initialization phase, which occurs at the beginning, and restoration phases, which are invoked each time the network's supernode connectivity is broken. Restoration phases utilize alternative routes that are computed at the initialization phase by the help of a novel optimization based on the well-known set-packing problem. Through extensive simulations, we demonstrate that ADPV is superior in preserving supernode connectivity. In particular, ADPV achieves this goal up to a failure of 95% of the sensor nodes; while the performance of DPV is limited to 5%. In turn, by our adaptive algorithm, we obtain a two-fold increase in supernode-connected lifetimes compared to DPV algorithm.Item Open Access High performance 3D CMP design with stacked hybrid memory architecture in the dark silicon era using a convex optimization model(IEEE, 2016-05) Onsori, Salman; Asad, Arghavan; Raahemifar, K.; Fathy, M.In this article, we present a convex optimization model to design a stacked hybrid memory system to improve performance and reduce energy consumption of the chip-multiprocessor (CMP). Our convex model optimizes numbers and placement of SRAM and STT-RAM memories on the memory layer, and efficiently maps applications/threads on cores in the core layer. Power consumption that is the main challenge in the dark silicon era is represented as a power constraint in this work and it is satisfied by the detailed optimization model in order to design a dark silicon aware 3D CMP. Experimental results show that the proposed architecture considerably improves the energy-delay product (EDP) and performance of the 3D CMP compared to the Baseline memory design. © 2016 IEEE.