Browsing by Subject "Physically based modeling"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Modeling and animation of brittle fracture in three dimensions(2007) Küçükyılmaz, AyşeThis thesis describes a system for simulating fracture in brittle objects. The system combines rigid body simulation methods with a constraint-based model to animate fracturing of arbitrary polyhedral shaped objects under impact. The objects are represented as sets of masses, where pairs of adjacent masses are connected by a distance-preserving linear constraint. The movement of the objects is normally realized by unconstrained rigid body dynamics. The fracture calculations are only done at discrete collision events. In case of an impact, the forces acting on the constraints are calculated. These forces determine how and where the object will break. The problem with most of the existing fracture systems is that they only allow simulations to be done offline, either because the utilized techniques are computationally expensive or they require many small steps for accuracy. This work presents a near-real-time solution to the problem of brittle fracture and a graphical user interface to create realistic animations.Item Open Access Particle-based simulation and visualization of fluid flows through porous media(Springer-Verlag, 2010) Bayraktar, S.; Güdükbay, Uğur; Özgüç, B.We propose a method of fluid simulation where boundary conditions are designed in such a way that fluid flow through porous media, pipes, and chokes can be realistically simulated. Such flows are known to be low Reynolds number incompressible flows and occur in many real life situations. To obtain a high quality fluid surface, we include a scalar value in isofunction. The scalar value indicates the relative position of each particle with respect to the fluid surface.Item Open Access Physical simulation of wood combustion by using particle system(2010) Gürcüoğlu, GizemIn computer graphics, the most challenging problem is modeling natural phenomena such as water, re, smoke etc. The reason behind this challenge is the structural complexity, as the simulation of natural phenomena depends on some physical equations that are di cult to implement and model. In complex physically based simulations, it is required to keep track of several properties of the object that participates in the simulation. These properties can change and their alteration may a ect other physical and thermal properties of object. As one of natural phenomena, burning wood has various properties such as combustion reaction, heat transfer, heat distribution, fuel consumption and object shape in which change in one during the duration of simulation alters the e ects of some other properties. There have been several models for animating and modeling re phenomena. The problem with most of the existing studies related to re modeling is that decomposition of the burning solid is not mentioned, instead solids are treated only as fuel source. In this thesis, we represent a physically based simulation of a particle based method for decomposition of burning wood and combustion process. In our work, besides being a fuel source, physical and thermal a ects of combustion process over wood has been observed. A particle based system has been modelled in order to simulate the decomposition of a wood object depending on internal and external properties and their interactions and the motion of the spreading re according to combustion process.