Browsing by Subject "Photons."
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access Characterization of photonic crystals at microwave frequencies(1996) Temelkuran, BurakVVe investigated the surface reflection properties of layer-by-layer photonic crystals, for dielectric and metallic based photonic crystals. By using a FabryPerot cavity analogy with the reflection-phase information of the photonic crystals, we predicted defect frequencies of planar defect structures. Our predictions were in good agreement with the measured defect frequencies. The Fabry-Perot cavity analogy was also used to relate the quality factors of the planar defect structures to the transmission of the mirrors of the cavity. A simple model was used to simulate the transmission spectra of planar defect structures, which agreed well with the experimental data. We also investigated the transmission and reflection properties of two different metallic crystal structures (face-centeredtetragonal and simple tetragonal). We obtained rejection rates of 7-8 dB per layer from metallic crystals. Defect modes created by removing rods resulted in high peak transmission (80%), and high quality factors (1740). Our measurements were in good agreement with theoretical simulations of metallic structures. Planar defect structures built around metallic structures resulted in higher quality factors (2250). We observed high reflection-rejection ratios (-80 dB) at defect frequencies for planar defect structures, which was explained by using the Fabry-Perot analogy. Finally, the enhanced field inside the defect volume was measured, by using a monopole receiver antenna inserted inside the defect. The maximum observed enhancement with respect to the incident field was around 200 for a planar defect structure. By placing a Schottky diode detector inside planar and box-like defects, we built resonant cavity enhanced (RCE) detectors and measured the enhanced field inside the defect.Item Open Access Design of compact optical devices based on periodic meta-structures(2013) Akosman, Ahmet EminManipulation of the flow of light is demanded for several applications such as communication, data storage, sensor, photovoltaic cells, microscopy, lasers and light emitting diodes for the purpose of designing compact, high-throughput and high efficiency optical devices. Nevertheless, the control of the propagation of the light becomes much harder in devices with smaller geometries mostly because of diffractions, loss mechanisms and fabrication difficulties. Furthermore, materials that are already available in the nature do not provide unprecedented optical properties for nanoscale optical applications. Due to this fact that fabrication of artificial materials is needed for utilizing novel and intriguing optical devices. For this purpose, some relatively new research fields have emerged like photonic crystals, metamaterials and high contrast gratings. We propose several designs based on aforementioned meta-structures to achieve compact and practically realizable optical devices. We presented compact optical demultiplexer, diode-like device and electro-optic modulator designs that are based on photonic crystals. We also proposed two circular polarizer designs based on metamaterials and high contrast gratings. Further, we investigated unidirectional transmission and polarization manipulation properties in chiral metamaterials. For most of the proposed designs, we also experimentally verified the numerical and theoretical findings. In conclusion, we can claim that the utilization of artifically structured materials give opportunity to realize the control of light much more easily in nanoscale designs.Item Open Access Hollow core photonic bandgap fibers for medical applications(2009) Vural, MertThe design, fabrication and characterization of photonic band gap (PBG) based optical polymer fibers is discussed. Unlike conventional total internal reflection (TIR) fibers, used primarily in telecommunications, PBG fibers can be made hollow core and can be used to guide infrared radiation of any wavelength, a property known as wavelength scalability. Since the electromagnetic radiation is transmitted in the hollow core of the fiber, the intrinsic absorption of the fiber core as well as the insertion Fresnel losses at front and end faces are avoided, giving rise to extraordinarily high power densities to be delivered. The fiber production line includes material characterization, and the design of nanoscale quarter wavestacks using common thermoplastic polymers (poly ether sulphone and poly ether imide) and chalcogenide glasses (As2S3, As2Se3, Ge15As25Se15Te45). The fiber preform is fabricated using rolling mechanism of thermally evaporated chalcogenide glasses on large area polymers. Subsequently, the fiber preforms are thermally drawn to obtain nano-structured PBG fibers.Two different fibers are designed and produced, signifying wavelength scalability of the overall process, for the widely used holmium (Ho:YAG) and carbon dioxide (CO2) medical lasers. The transmission characteristics of the fibers proved that they can be used to safely deliver 15Wlaser power, along a 3 meter fiber with external diameter of 1.5 mm and hollow core diameter of 0.5 mm, corresponding to a laser power density of 1kW/cm2 with a loss of -10dB/m. The PBG fibers are expected to be widely used in high precision surgical laser for incision, photoablation and coagulation where infrared radiation is the radiation of choice for its superior laser-tissue interaction properties.Item Open Access Novel approaches to control the propagation of electromagnetic waves : metamaterials and photonic crystals(2007) Bulu, İrfanApplications in areas such as photonics, antennas, imaging and optics require the control of propagation of electromagnetic waves and the control of emission of electromagnetic radiation. Achievements in three key research fields may provide the answer to these problems. These emerging research fields are metamaterials, photonic crystals and surface plasmons. This thesis will be about our work on metamaterials and photonic crystals. Metamaterials are a new class of artificial structures whose electromagnetic response can be described by effective permeability and permittivity functions that may attain negative values. I will present our results on the properties of a metamaterial structure that we proposed recently, the labyrinth structure. I will demonstrate that the labyrinth structure can be used to design a medium that exhibits negative permeability values within a certain frequency range. Moreover, I will explore the possibility of negative refraction and sub-wavelength focusing of electromagnetic waves by two and threedimensional labyrinth structure based left-handed mediums. Novel applications such as metamaterial based compact size antennas, ultra-small high-Q cavities will be also discussed. Another type of artificial electromagnetic structures are the photonic crystals. Photonic crystals can be described by a periodic modulation of the permittivity and/or the permeability of a medium. I will discuss two phenomena arising from the dispersion properties of photonic crystals and their possible applications. One of these phenomena is the existence of surfacebound electromagnetic modes and the other is the negative refraction effect. I will further show that the surface-bound modes can be used for applications such as beaming of electromagnetic waves and enhancement of transmission through sub-wavelength apertures. In addition, I will demonstrate that the negative refraction effect can be utilized to focus electromagnetic waves emitted from a finite size source.Item Open Access Physics and applications of coupled-cavity structures in photonic crystals(2002) Bayındır, MehmetWe proposed and demonstrated a new type of propagation mechanism for the electromagnetic waves in photonic band gap materials. Photons propagate through coupled cavities due to interaction between the highly localized neighboring cavity modes. We reported a novel waveguide, which we called coupled-cavity waveguide (CCW), in two- and three-dimensional photonic structures. By using CCWs, we demonstrated lossless and reflectionless waveguide bends, efficient power splitters, and photonic switches. We also experimentally observed the splitting of eigenmodes in coupled-cavities and formation of defect band due to interaction between the cavity modes. We reported the modification of spontaneous emission from hydrogenated amorphous silicon-nitride and silicon-oxide multilayers with coupled Fabry-Perot microcavities. We observed that the spontaneous emission rate is drastically enhanced at the coupledmicrocavity band edges due to very long photon lifetime. We also simulated our photonic structures by using the Transfer-Matrix-Method (TMM) and the Finite-Difference-Time-Domain (FDTD) method. The tight-binding (TB) approach, which was originally developped for the electronic structure calculations, is applied to the photonic structures, and compared to our experimental results. The measured results agree well with the simulations and the prediction of TB approximation. The excellent agreement between the measured, simulated, and the TB results is an indication of potential usage of TB approximation in photonic structures. Our achievements open up a new research area, namely physics and applications of coupled-cavities, in photonic structures. These results are very promising to construct for the future all-optical components on a single chip.Item Open Access Physics and applications of photonic crystals(2000) Temelkuran, BurakWe first fabricated a dielectric based layer-by-layer photonic crystal, with a three-dimensional photonic band gap at microwave frequencies. We investigated the transmission, reflection and defect characteristics of the crystal. A Fabry-Perot cavity analogy was used to understand the localization of the electromagnetic (EM) fields around defects. We then showed the enhancement of the EM held within the defect volumes, and suggested a possible application: resonant cavity enhanced detectors built around photonic crystals. We demonstrated that a detector inserted inside the defect volume benefits from the frequency selectivity and the highly enhanced field of the cavity. Next, we investigated the radiation of the EM fields from a source inserted in the defect volume, and observed that the radiated field has a very high directivity and efficiency. The experimental results agreed well with the theoretical expectations. We demonstrated waveguiding structures built around photonic crystals. We showed that EM waves could be guided through a planar air gap between two photonic crystals, in which the wave is coupled inside the defect volume, and having no where else to go, propagates through this opening. The dispersion diagrams for these planar waveguide structures also agreed well with the theoretical expectations of our waveguide model. We also showed that, the wave could be guided along a single missing rod, and demonstrated the bending of the EM waves for these waveguide structures with “L” shaped openings. We tested metallic photonic crystals built in different dimensions and diflferent filling ratios. We observed many superiorities of these structures when compared to dielectric-based photonic crystals. A full characterisation of various metallic photonic crystals was performed. We also showed that metallic photonic crystals are suitable for some of the applications we have demonstrated for dielectric structures. We also fabricated a new layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques, with a band gap at millimeter wave frequencies. We showed that the transmission and defect characteristics of these structures are analogous to metallic photonic crystals, as we have predicted. The experimental results agree well with the predictions of the transfer matrix method (TMM) simulations. The method can be extended to fabricate these crystals at THz. frequencies.Item Open Access Polymer / glass hollow-core photonic band gap fibers for infrared laser beam delivery(2011) Köylü, ÖzlemPhotonic band gap fibers are proposed for the medical applications of laser light transmission into body. Conventional optical fibers guide light via total internal reflection. Due to light guiding mechanisms and materials they have limited frequency range, fiber flexibility and laser power. On the other hand, it is possible to scale operating wavelengths of PBG fibers just by changing a few parameters during fabrication process. Besides, hollow core of PBG fibers eliminates material absorptions and non-linearities during light guiding. PBG fiber production starts from material characterization; and selection; and continues with fiber design, thin film coating, preform preparation and fiber drawing. Studies on theoretical calculations and material properties have shown that best candidate materials for CO2 laser delivery are As2Se3 and poly-ethersulfone (PES). For this purpose, As2Se3 coated PES films are rolled to form a preform and consolidated before thermal drawing. Characterization of drawn fibers indicated that CO2 laser can be transmitted with loss levels of > 1 dB/m and 32 W output power is observed from a 1.2 m long fiber. After fabrication and characterization of PBG fibers, a prototype infrared laser system is built and tested on various applications. In our group laser tissue interactions are examined to see effectiveness of CO2 laser on tumor tissue. Experiments showed that tumor tissue is affected in a very distinctive way compared to healthy tissue. Absorption of cancerous lung tissue at CO2 laser wavelength (10.6 µm) is higher than absorption of healthy tissue at the same wavelength. This study proposes a wide use of PBG fiber for not just CO2 lasers, but also other laser systems used in different medical operations, such as Ho:YAG lasers. PBG fibers for high power laser delivery are novel structures for fast, painless and bloodless surgeries.Item Open Access Radiation properties of sources inside photonic crystals(2003) Bulu, İrfanThe control of spontaneous emission is an important problem both in basic and applied physics. Two main problems arise in the control of emission: enhancement or suppression and angular confinement of radiation. In this work we studied the properties of emission of radiation from a localized microwave source embedded inside a photonic crystal. We showed that by using a photonic crystal it is possible to enhance the emitted power. We achieved up to 22 times enhancement of power at the band edge of the photonic crystal. We also studied the properties of emission of radiation from a source embedded inside a single defect structure and embedded inside a coupled defect structure. Enhanced emission for single defect and coupled defect structures was also observed. Moreover, angular distribution of power from a localized microwave source embedded inside a photonic crystal was studied. Angular confinement was achieved near the band edge of the photonic crystal. Half power beam widths as small as 6 degrees were obtained. This is the smallest half power beam width in the literature obtained by using photonic crystals. We also investigated frequency and size dependence of the angular distribution. We observed that the angular confinement strongly depends on frequency and on the size of the photonic crystal. In fact, we showed that angular confinement could be obtained just at the band edge frequency. In conclusion, our work showed that the problem of controlling the spontaneous emission could be solved at once by using photonic crystals.Item Open Access Sub-wavelength resolution in a photonic crystal superlens(2003) Çubukçu, ErtuğrulMaterials that can bend light in the opposite direction to normal (’left-handed’ materials) reverse the way in which refraction usually works-this negative refractive index is due to simultaneously negative permeability and permittivity. Here we demonstrate negative refraction of electromagnetic waves in a two-dimensional dielectric photonic crystal that has a periodically modulated positive permeability and a permeability of unity. This experimental verification of negative refraction is a step towards the realization of a ’superlens’ that will be able to focus features smaller than the wavelength of light. Our structure consists of a square array of alumina rods in air. To obtain the frequency range within which the negative refraction and the other peculiar properties incorporated with it, we have calculated the the equal frequency contours of our photonic crystal with the photonic plane wave expansion method. We found out that 13.7 GHz is the optimum frequency for negative refraction. We took transmission measurements to confirm our structure’s predicted negative refraction: we used the the interfaces of the photonic crystal in the Γ − M direction. Our experiments were simulated with the finite-difference time-domain method (FDTD). The negative index of refraction was determined to be −1.94, which is close to the theoretical value of −2.06 calculated by the FDTD method. Since we know that we have a negative refractive material , we used our crystal to test the superlensing effect that was predicted for negative refractive materials. We have demonstrated that the image of two coherent point sources separated by a distance of λ/3 can be resolved. We have extended our approach to the case with two incoherent point sources, and we have achieved subwavelength resolution for this configuration as well. To our knowledge, this is the first demonstration of subwavelength resolution of electromagnetic waves in a negative index material.Item Open Access Waveguiding of electromagnetic waves and investigation of negative phase velocity in photonic crystals and metamaterials(2012) Çolak, İlyas EvrimElectromagnetic wave propagation is characterized in periodic dielectric and metallic structures: Photonic Crystals (PCs) and Metamaterials, respectively. The applications of these structures are demonstrated in the Microwave regime. In the first application, Graded Index (GRIN) PC is used to focus the incoming waves into a small spot. Speaking in terms of PC period a, for an incident beam with Full Width Half Maximum of 9.20a the power of the focusing behavior is quantified by looking at the spot size conversion ratio, which is around 3.9. PCs can act as an efficient input coupler for the PC Waveguide (PCW). The GRIN PC has been experimentally shown to yield a coupling efficiency of 5 dB over the single PCW at 18 GHz. This method can be applied to provide a solution for the input coupling losses between PC structures and other lightwave circuits. PCs can also be used to achieve dual-bandpass and bandstop spatial filtering by proper adjustments of the lattice parameters and the frequency range. For the plane-wave excitation, a wideband spatial filtering is shown to exist due to the specific Fabry-Perot type resonances, which are nearly independent on the angle of incidence. The effect of the finite angular distribution of the Gaussian-beam excitation is also demonstrated. The spatial filtering in the incidence and observation angle domains has been discussed both numerically and experimentally for the non-plane-wave excitations under the light of calculated iso-frequency contours. In addition to bandstop characteristics, the dispersion relation of the PCs can be modified with the proper arrangement, namely by employment of the dimer layer. This surface layer supports the surface waves and serves like a waveguide for the electromagnetic waves. At higher frequencies above the lightline, surface waves radiate into air in the form of backward leaky waves and frequency dependent steering is reported from 0 º to 70º for the outgoing beam. The leaky wave behavior and backward radiation is similar to that is seen in Left-Handed (LH) Metamaterials. Metallic fishnet layers are used to demonstrate negative refractive index (NRI) in conjunction with the left-handed behavior in this class of metamaterial. A wedge structure formed by fishnet layers is used to measure the NRI which was also verified by the retrieval analysis. The limits of homogenization are discussed. The dependence of the LH properties on the fishnet parameters is investigated parametrically. For example, the NRI changes from -1.8 to -1.3 as the interseperation distance of the layers varies from as=λ/10.5 (2mm) to as=λ/4.2 (4mm) at magnetic resonance frequency around 14.3 GHz (ωm). It is also shown that the fishnet layers behave as an LC resonator as well as a TEM waveguide and a 1D transmission line at ωm.