Novel approaches to control the propagation of electromagnetic waves : metamaterials and photonic crystals
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Series
Abstract
Applications in areas such as photonics, antennas, imaging and optics require the control of propagation of electromagnetic waves and the control of emission of electromagnetic radiation. Achievements in three key research fields may provide the answer to these problems. These emerging research fields are metamaterials, photonic crystals and surface plasmons. This thesis will be about our work on metamaterials and photonic crystals. Metamaterials are a new class of artificial structures whose electromagnetic response can be described by effective permeability and permittivity functions that may attain negative values. I will present our results on the properties of a metamaterial structure that we proposed recently, the labyrinth structure. I will demonstrate that the labyrinth structure can be used to design a medium that exhibits negative permeability values within a certain frequency range. Moreover, I will explore the possibility of negative refraction and sub-wavelength focusing of electromagnetic waves by two and threedimensional labyrinth structure based left-handed mediums. Novel applications such as metamaterial based compact size antennas, ultra-small high-Q cavities will be also discussed. Another type of artificial electromagnetic structures are the photonic crystals. Photonic crystals can be described by a periodic modulation of the permittivity and/or the permeability of a medium. I will discuss two phenomena arising from the dispersion properties of photonic crystals and their possible applications. One of these phenomena is the existence of surfacebound electromagnetic modes and the other is the negative refraction effect. I will further show that the surface-bound modes can be used for applications such as beaming of electromagnetic waves and enhancement of transmission through sub-wavelength apertures. In addition, I will demonstrate that the negative refraction effect can be utilized to focus electromagnetic waves emitted from a finite size source.