Browsing by Subject "Photodynamic process"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A bifunctional photosensitizer for enhanced fractional photodynamic therapy: singlet oxygen generation in the presence and absence of light(Wiley-VCH Verlag, 2016) Turan, I. S.; Yildiz, D.; Turksoy, A.; Gunaydin, G.; Akkaya, E. U.The photosensitized generation of singlet oxygen within tumor tissues during photodynamic therapy (PDT) is self-limiting, as the already low oxygen concentrations within tumors is further diminished during the process. In certain applications, to minimize photoinduced hypoxia the light is introduced intermittently (fractional PDT) to allow time for the replenishment of cellular oxygen. This condition extends the time required for effective therapy. Herein, we demonstrated that a photosensitizer with an additional 2-pyridone module for trapping singlet oxygen would be useful in fractional PDT. Thus, in the light cycle, the endoperoxide of 2-pyridone is generated along with singlet oxygen. In the dark cycle, the endoperoxide undergoes thermal cycloreversion to produce singlet oxygen, regenerating the 2-pyridone module. As a result, the photodynamic process can continue in the dark as well as in the light cycles. Cell-culture studies validated this working principle in vitro.Item Open Access Charging/discharging dynamics of CdS and CdSe films under photoillumination using dynamic x-ray photoelectron spectroscopy(A I P Publishing LLC, 2010) Sezen, H.; Süzer, ŞefikThin films of CdS and CdSe are deposited on HF-cleaned Si O2 /Si substrates containing ∼5 nm thermally grown silicon oxide. x-ray photoelectron spectroscopy (XPS) data of these films are collected in a dynamic mode, which is based on recording the spectrum under modulation with an electrical signal in the form of ±10 V square-wave pulses. Accordingly, all peaks are twined and shifted with respect to the grounded spectrum. The binding energy difference between the twinned peaks of a dielectric system has a strong dependence on the frequency of the electrical stimuli. Therefore, dynamic XPS provides a means to extract additional properties of dielectric materials, such as effective resistance and capacitance. In this work, the authors report a new advancement to the previous method, where they now probe a photodynamic process. For this reason, photoillumination is introduced as an additional form of stimulus and used to investigate the combined optical and electrical response of the photoconductive thin films of CdS and CdSe using dynamic XPS.