Browsing by Subject "Photocatalytic activity"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Development of multifunctional nanofibrous materials via electrospinning(2014) Kayacı, FatmaElectrospun nanofibers are very attractive for many applications including functional textile, biomedical, energy, sensor, biotechnology, food packaging and filtration due to their large surface area to volume ratio, pores in nano range, high encapsulation efficiency, low basis weight and design flexibility for physical/chemical modification. Cyclodextrins (CD) are applicable in several industries such as pharmaceutical, cosmetic, textile, functional food and filtration owing to their intriguing ability to form non-covalent host-guest inclusion complexes (IC) with a variety of molecules. Furhermore, atomic layer deposition (ALD) technique can be effectively used to deposit metal oxides onto temperature-sensitive polymeric substrates. In this dissertation, initially, CD-IC of bioactive compounds (vanillin, eugenol, geraniol, triclosan) having antibacterial and/or antioxidant properties were incorporated into electrospun nanofibers via electrospinning. Higher thermal stability, controlled/sustained release, enhanced solubility and functionality of these compounds have been provided by CD-IC. These specific properties of CD-IC have been combined with high surface area and nanoporous structure of electrospun nanofibers. Thereby, the resulting functional nanofibrous materials can be quite applicable in active food packaging in order to prevent foodborne diseases by providing safety/quality of nutrition and extending shelf life of food. On the other hand, CD incorporated electrospun nanofibers have also been developed for efficient removal of unpleasant odors, hazardous organic waste molecules from air by taking advantages of not only high surface area and nanoporous structure of nanofibers but also IC capability of CD. Since CD are water soluble, CD polymer (CDP) coated onto nanofibers have been also obtained for molecular filtration of polyaromatic hydrocarbons from aqueous environment. Moreover, metal oxides (ZnO, TiO2) have been deposited onto electrospun nanofibers via ALD in order to develop efficient and energy saving innovative nanofibrous membrane materials for water purification and waste treatment. Thus, organic pollutants in water have been effectively disintegrated by photocatalytic activity of these nanofibrous filtering materials having high surface area. Overall, the multifunctional electrospun nanofibrous materials have been improved by incorporating CD-IC or CD into the fiber matrix; by coating either CDP or metal oxides (ZnO, TiO2) onto fiber surface to enhance possible applications of nanofibers for filtration, food packaging, functional textiles, etc.Item Open Access Flexible organic-inorganic core-shell nanofibers by electrospinning and atomic layer deposition(CRC Press, 2012) Kayacı, Fatma; Çağla, Özgit-Akgün; Dönmez, İnci; Bıyıklı, Necmi; Uyar, TamerOrganic-inorganic core-shell nanofibers were fabricated by combining electrospinning and atomic layer deposition (ALD). In the first step, nylon66 (polymeric organic core) nanofibers having different average fiber diameters (∼100 nm, ∼250 nm and ∼650 nm) were electrospun by using different solvent systems and polymer concentrations. In the second step, uniform and conformal layer of zinc oxide (ZnO) (inorganic shell) with precise thickness (∼90 nm) and composition on the round surface of the nylon nanofibers were deposited by ALD. The core-shell nylon66-ZnO nanofibers have shown unique properties such as structural flexibility due to the polymeric core and photocatalytic activity due to the ZnO shell layer.Item Open Access Low temperature growth, characterization and applications of rf-sputtered SrTiO3 and BaSrTiO3 thin films(2016-03) Bayrak, TürkanAmong the several perovskite ferroelectric oxides, SrTiO3 (STO) and BaSrTiO3 (BST) thin lms have attracted signi cant attention due to their potential applications in oxide-based electronics. However, reliability and performance of STO and BST thin lms depend usually on the precise knowledge of microstructure, as well as optical and electrical properties. STO and BST thin lms were deposited at room-temperature on Si (100), UVgrade fused silica, quartz substrates and TiO2 nano bers by radio frequency (RF) magnetron sputtering using di erent plasma power, oxygen mixing ratios (OMRs) and deposition pressure levels. As-deposited thin lms showed amorphous-like nanocrystalline microstructure almost independent of the deposition conditions. In uence of post-deposition annealing at various temperatures of RF sputtered STO thin lms were also investigated. All lms were found to be highly transparent (>75%) in the visible region, and both STO and BST lms exhibited well de ned main absorption edges: the calculated indirect and direct band gaps for STO lms were in the range of 2.32 to 4.55 eV. The refractive index of the STO lms increased with OMR and post-deposition annealing for 3 mTorr deposition for STO, BST and STO annealing study. However, there is no correlation for 5 mTorr deposition. The refractive indices of BST lms were in the range of 1.90-2.07 at 550 nm depending on their deposition conditions. The optical band gap of the BST lms were calculated the ranging in 3.60 to 4.30 eV. Electrical dielectric constant values of the STO thin lms were extracted from frequency or voltage dependent capacitance measurements using micro-fabricated Ag/STO/p-Si device structures. High dielectric constant values reaching up to 100 were obtained. All STO samples exhibited more than 2.5 C/cm2 charge storage capacity and low dielectric loss (less than 0.07 at 100 kHz). Post-deposition annealing at 800oC for 1 h resulted in polycrystalline BST thin lms with increased refractive indices and dielectric constants, along with reduced optical transmission values. Frequency dependent dielectric constants were found to be in the range of 46-72, and the observed leakage current was very small,less than 1 A. Our experimental results show that these low temperature grown STO and BST lms have the potential for various electrical applications.Item Open Access Nanofibrous nanocomposites via electrospinning(2011) Deniz, Ali EkremIn recent years, numerous studies have been reported for fabrication of composite nanofibers from polymeric and inorganic materials by using electrospinning method. In the first part of this study, TiO2 and ZnO inorganic nanofibers were produced by electrospinning from their precursors by using polymeric carrier matrix and their photocatalytic activity of these metal oxide nanofibers were studied. Moreover, electrospun TiO2 nanofibers were crushed into short nanofibers (TiO2-SNF) and embedded in electrospun polymeric nanofiber matrixes such as poly(methyl methacrylate) (PMMA), polyacrylonitrile (PAN), polyethylene terephthalate (PET), polycarbonate (PC) and polyvinylidene fluoride (PVDF). Different weight loading of TiO2-SNF ranging from 2% to 8% (w/w, respect to polymer) incorporated into PVDF nanofibrous matrix was applied and the structural and morphological changes along with their photocatalytic activities were also examined. In the second part, metallic nanoparticles produced by laser ablation method were incorporated into nanofibrous polymeric matrix by using electrospinning technique. For example, gold (Au) and silver (Ag) nanoparticles (NPs) were produced from their metallic sources by laser ablation method directly in the polymer solutions. The NPs/polymer mixtures were electrospun and surface plasmon resonance effect of Au-NPs and Ag-NPs on optical properties of the nanofibers was studied. In addition, germanium nanocrystals produced by means of laser ablation were mixed with PVDF polymer solution and consequently electrospun into composite polymeric nanofiber matrix.Item Open Access Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range(Elsevier, 2011-04-13) Perkgoz, N. K.; Toru, R. S.; Unal, E.; Sefunc, M.A.; Tek, S.; Mutlugun, E.; Soganci, I. M.; Celiker, H.; Celiker, G.; Demir, Hilmi VolkanWe propose and demonstrate photocatalytic hybrid nanocomposites that co-integrate TiO(2) and ZnO nanoparticles in the same host resin to substantially enhance their combined photocatalytic activity in the near-UV and visible spectral ranges, where the intrinsic photocatalytic activity of TiO2 nanoparticles or that of ZnO nanoparticles is individually considerably weak For a comparative study, by embedding TiO(2) nanoparticles of ca. 6 nm and ZnO nanoparticles of ca. 40 nm in the sol-gel matrix of acrylic resin, we make thin film coatings of TiO(2)-ZnO nanoparticles (combination of TiO2 and ZnO, each with a mass ratio of 8.5%), as well as the composite films of TiO(2) nanoparticles alone (17.0%), and ZnO nanoparticles alone (17.0%), and a negative control group with no nanoparticles. For all of these thin films coated on polyvinyl chloride (PVC) polyester, we experimentally study photocatalytic activity and systematically measure spectral degradation (recovery obtained by photocatalytic reactions). This spectral characterization exhibits photodegradation levels of the contaminant at different excitation wavelengths (in the range of 310-469 nm) to distinguish different parts of optical spectrum where TiO(2) and ZnO nanopartides are individually and concurrently active. We observe that the photocatalytic activity is significantly improved towards the visible range with the use of TiO(2)-ZnO combination compared to the individual cases. Particularly for the excitation wavelengths of photochemical reactions longer than 400 nm, where the negative control group and ZnO nanoparticles alone yield no observable photodegradation level and TiO2 nanoparticles alone lead to a low photodegradation level of 14%, the synergic combination of TiO(2)-ZnO nanoparticles achieves a photodegradation level as high as 30%. Investigating their scanning electron microscopy (SEM), X-ray diffraction (XRD), and high resolution transmission electron microscopy (HRTEM), we present evidence of the heterostructure, crystallography, and chemical bonding states for the hybrid TiO(2)-ZnO nanocomposite films, in comparison to the films of only TiO(2) nanoparticles, only ZnO nanoparticles, and no nanoparticles.Item Open Access “Plug and Play” photosensitizer–catalyst dyads for water oxidation(American Chemical Society, 2022-04-28) Chalil Oglou, Ramadan; Ulusoy Ghobadi, T. Gamze; Özbay, Ekmel; Karadaş, FerdiWe present a simple and easy-to-scale synthetic method to plug common organic photosensitizers into a cyanide-based network structure for the development of photosensitizer-water oxidation catalyst (PS-WOC) dyad assemblies for the photocatalytic water oxidation process. Three photosensitizers, one of which absorbs red light similar to P680 in photosystem II, were utilized to harvest different regions of the solar spectrum. Photosensitizers are covalently coordinated to CoFe Prussian blue structures to prepare PS-WOC dyads. All dyads exhibit steady water oxidation catalytic activities throughout a 6 h photocatalytic experiment. Our results demonstrate that the covalent coordination between the PS and WOC group not only enhances the photocatalytic activity but also improves the robustness of the organic PS group. The photocatalytic activity of “plug and play” dyads relies on several structural and electronic parameters, including the position of the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the PS with respect to the HOMO level of the catalytic site, the intensity and wavelength of the absorption band of the PS, and the number of catalytic sites.Item Open Access Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: Flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity(American Chemical Society, 2012) Kayaci, F.; Akgun, C. O.; Donmez, I.; Bıyıklı, Necmi; Uyar, TamerPolymer-inorganic core-shell nanofibers were produced by two-step approach; electrospinning and atomic layer deposition (ALD). First, nylon 6,6 (polymeric core) nanofibers were obtained by electrospinning, and then zinc oxide (ZnO) (inorganic shell) with precise thickness control was deposited onto electrospun nylon 6,6 nanofibers using ALD technique. The bead-free and uniform nylon 6,6 nanofibers having different average fiber diameters (∼80, ∼240 and ∼650 nm) were achieved by using two different solvent systems and polymer concentrations. ZnO layer about 90 nm, having uniform thickness around the fiber structure, was successfully deposited onto the nylon 6,6 nanofibers. Because of the low deposition temperature utilized (200 °C), ALD process did not deform the polymeric fiber structure, and highly conformal ZnO layer with precise thickness and composition over a large scale were accomplished regardless of the differences in fiber diameters. ZnO shell layer was found to have a polycrystalline nature with hexagonal wurtzite structure. The core-shell nylon 6,6-ZnO nanofiber mats were flexible because of the polymeric core component. Photocatalytic activity of the core-shell nylon 6,6-ZnO nanofiber mats were tested by following the photocatalytic decomposition of rhodamine-B dye. The nylon 6,6-ZnO nanofiber mat, having thinner fiber diameter, has shown better photocatalytic efficiency due to higher surface area of this sample. These nylon 6,6-ZnO nanofiber mats have also shown structural stability and kept their photocatalytic activity for the second cycle test. Our findings suggest that core-shell nylon 6,6-ZnO nanofiber mat can be a very good candidate as a filter material for water purification and organic waste treatment because of their photocatalytic properties along with structural flexibility and stability. © 2012 American Chemical Society.