Browsing by Subject "Patterning"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A new tool for differentiating hepatocellular cancer cells: patterned carbon nanotube arrays(Elsevier, 2015) Kucukayan-Dogu, G.; Gozen, D.; Bitirim, V.; Akcali, K. C.; Bengu, E.We aimed to develop a new approach to detect the invasiveness and metastatic degree of hepatocellular carcinoma cells (HCC) based on their epithelial mesenchymal transition (EMT) status by using patterned carbon nanotubes (CNT) without any further surface functionalization. We used well differentiated HUH7 and poorly differentiated SNU182 cells to examine and compare their adhesive features on patterned CNTs. We found that the well differentiated HUH7 cells attached significantly more on the patterned CNTs than the poorly differentiated SNU182 cells due to the difference in epithelial and mesenchymal phenotypes of these cells. Collagen coated patterned CNTs having less roughness resulted in a decrease in the number of attached cells compared to non-coated patterned surfaces indicating that surface topography playing also a vital role on the cell attachment. LDH testing indicated no adverse, or thereof toxic effect of collagen coated or non-coated patterned surfaces on the HCC cells. The results of this study clearly suggest that patterned CNT surfaces can be used as a diagnostic tool to determine the invasiveness and metastatic level of HCCs. Hence, CNTs could be considered as a promising diagnostic tool for the detection of differentiation and invasiveness of the HCC cells. © 2015 Elsevier B.V. All rights reserved.Item Open Access Patterned carbon nanotubes as a new three-dimensional scaffold for mesenchymal stem cells(Elsevier, 2013) Bitirim, Verda Ceylan; Küçükayan-Doğu, Gökçe; Bengü, Erman; Akçalı, Kamil CanWe investigated the cellular adhesive features of mesenchymal stem cells (MSC) on non-coated and collagen coated patterned and vertically aligned carbon nanotube (CNT) structures mimicking the natural extra cellular matrix (ECM). Patterning was achieved using the elasto-capillary induced by water treatment on the CNT arrays. After confirmation with specific markers both at transcript and protein levels, MSCs from different passages were seeded on either collagen coated or non-coated patterned CNTs. Adhesion and growth of MSCs on the patterned CNT arrays were examined using scanning electron microscopy image analysis and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) assays. The highest MSC count was observed on the non-coated patterned CNTs at passage zero, while decreasing numbers of MSCs were found at the later passages. Similarly, MTT assay results also revealed a decrease in the viability of the MSCs for the later passages. Overall, the cell count and viability experiments indicated that MSCs were able to better attach to non-coated patterned CNTs compared to those coated with collagen. Therefore, the patterned CNT surfaces can be potentially used as a scaffold mimicking the ECM environment for MSC growth which presents an alternative approach to MSC-based transplantation therapy applications.