BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Parallel sparse matrix vector multiplication"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fast optimal load balancing algorithms for 1D partitioning
    (Academic Press, 2004) Pınar, A.; Aykanat, Cevdet
    The one-dimensional decomposition of nonuniform workload arrays with optimal load balancing is investigated. The problem has been studied in the literature as the "chains-on-chains partitioning" problem. Despite the rich literature on exact algorithms, heuristics are still used in parallel computing community with the "hope" of good decompositions and the "myth" of exact algorithms being hard to implement and not runtime efficient. We show that exact algorithms yield significant improvements in load balance over heuristics with negligible overhead. Detailed pseudocodes of the proposed algorithms are provided for reproducibility. We start with a literature review and propose improvements and efficient implementation tips for these algorithms. We also introduce novel algorithms that are asymptotically and runtime efficient. Our experiments on sparse matrix and direct volume rendering datasets verify that balance can be significantly improved by using exact algorithms. The proposed exact algorithms are 100 times faster than a single sparse-matrix vector multiplication for 64-way decompositions on the average. We conclude that exact algorithms with proposed efficient implementations can effectively replace heuristics. © 2004 Elsevier Inc. All rights reserved.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback