Fast optimal load balancing algorithms for 1D partitioning

Date

2004

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Parallel and Distributed Computing

Print ISSN

0743-7315
1096-0848

Electronic ISSN

Publisher

Academic Press

Volume

64

Issue

8

Pages

974 - 996

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
9
downloads

Series

Abstract

The one-dimensional decomposition of nonuniform workload arrays with optimal load balancing is investigated. The problem has been studied in the literature as the "chains-on-chains partitioning" problem. Despite the rich literature on exact algorithms, heuristics are still used in parallel computing community with the "hope" of good decompositions and the "myth" of exact algorithms being hard to implement and not runtime efficient. We show that exact algorithms yield significant improvements in load balance over heuristics with negligible overhead. Detailed pseudocodes of the proposed algorithms are provided for reproducibility. We start with a literature review and propose improvements and efficient implementation tips for these algorithms. We also introduce novel algorithms that are asymptotically and runtime efficient. Our experiments on sparse matrix and direct volume rendering datasets verify that balance can be significantly improved by using exact algorithms. The proposed exact algorithms are 100 times faster than a single sparse-matrix vector multiplication for 64-way decompositions on the average. We conclude that exact algorithms with proposed efficient implementations can effectively replace heuristics. © 2004 Elsevier Inc. All rights reserved.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)