BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "PVDF-TrFE"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    High performance multimaterial fibers and devices
    (2016-06) Say, Mehmet Girayhan
    Fabricating low energy requiring and self-powered flexible electronic devices can decrease world energy need since energy demand seems to be one of the most fundamental problems in the near future. An excellent solution to overcome this drawback is fabricating functional and energy efficient materials. Fabricating high piezoelectric coefficient materials that are compatible with mass production, easy to produce, low cost and non-toxic is highly demanded in order to design highly sensitive sensors and self-powered devices. This thesis introduces piezoelectric polymer (PVDF-TrFE) based several sensor types, energy harvesting devices such as; prosthetic hand, cardiac sensors, electronic skin, which represent promising device architectures for flexible electronics. Semiconductor, metal, composite, piezoelectric materials or polymers can be drawn by thermal fiber drawing and by applying iterative size reduction technique, the geometry, size and length of fabricated structures can be controlled, which also enables us to design novel in fiber, fiber-array devices at nanoscale. First, to enhance PVDF-TrFE fiber performance, crystallinity of fibers was improved by introducing new designs and phase transition mechanism was investigated in fabricated films and fibers. Finally, conductive composite material for flexible interconnects and electrodes was developed. As a whole, a variety of novel piezoelectric and conductive composite fibers were fabricated by using novel size reduction technique and fiber devices were designed for flexible electronics applications.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback