High performance multimaterial fibers and devices

Available
The embargo period has ended, and this item is now available.

Date

2016-06

Editor(s)

Advisor

Bayındır, Mehmet

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Fabricating low energy requiring and self-powered flexible electronic devices can decrease world energy need since energy demand seems to be one of the most fundamental problems in the near future. An excellent solution to overcome this drawback is fabricating functional and energy efficient materials. Fabricating high piezoelectric coefficient materials that are compatible with mass production, easy to produce, low cost and non-toxic is highly demanded in order to design highly sensitive sensors and self-powered devices. This thesis introduces piezoelectric polymer (PVDF-TrFE) based several sensor types, energy harvesting devices such as; prosthetic hand, cardiac sensors, electronic skin, which represent promising device architectures for flexible electronics. Semiconductor, metal, composite, piezoelectric materials or polymers can be drawn by thermal fiber drawing and by applying iterative size reduction technique, the geometry, size and length of fabricated structures can be controlled, which also enables us to design novel in fiber, fiber-array devices at nanoscale. First, to enhance PVDF-TrFE fiber performance, crystallinity of fibers was improved by introducing new designs and phase transition mechanism was investigated in fabricated films and fibers. Finally, conductive composite material for flexible interconnects and electrodes was developed. As a whole, a variety of novel piezoelectric and conductive composite fibers were fabricated by using novel size reduction technique and fiber devices were designed for flexible electronics applications.

Course

Other identifiers

Book Title

Degree Discipline

Materials Science and Nanotechnology

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)