BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Optomechanics"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Explorations on optomechanical devices for energy sink applications
    (2023-01) Lee, ChulHyeong
    Resonance energy dissipation mechanism has been gaining importance in the interest of sensing applications. As such, the capacity for precise and fast measurement of the transient phase of motion has been desirable. The development of optomechanics in recent years has enabled such a fast scheme. Here a design, setup, and measurement of a silicon nitride optomechanical system is explored. Fundamental parameters of the design are investigated with simulation analysis. Grating structures, waveguides, and resonator parameters are explored. A series of optical resonance responses are observed, and the resonance characteristics are analyzed for optomechanical devices of combinations of design parameters. Measurements on devices of different nanomechanical beam modulation schemes are performed. To translate the technique from the optical to microwave domain, an integration of a split ring resonator (SRR) cavity and NEMS device is explored. Mode simulation of the modified cavity design is done. A technique of alignment of EBL to an existing pattern on an insulating surface is optimized. The studied designs leave possibilities for applications in real-time mass sensing and fundamental studies on energy dissipation mechanisms.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Nanomechanical buckling for applications in nonlinear dynamics
    (2021-07) Demiralp, Berke
    There has not been enough attention on post buckling behavior at nano scale even though it reveals rich nonlinear and chaotic dynamics and has potential to be used on cutting edge sensing, actuation, computation and communication applications. Here, full motion of the nanomechanical buckling, starting from un-buckled position to large deformations at post buckling regime has been precisely measured with error bars of ±7 nm for large deformation regime and ±2.8 nm for √ initial bending, with a noise floor of 38.5 pm/ Hz. Line mode of SEM is used for deflection detection which uses secondary electrons collected from sample and relevant code is developed for data processing. Initial bending, initial buckling and inflection point are well defined which can help us to understand transition to post buckling regime and development of sensors and actuators. Additionally, one well oscillation, double well oscillation and chaotic trajectories are investi-gated using the system as forced double well oscillator. Trajectory plotting is performed with an image processing code which benefits from contrast difference of the device and environment. A new region within double well oscillation regime is observed where motion converts from one well oscillation to double well oscilla-tion which could be a candidate on mechanical computation and communication applications. Also, a preliminary design for synchronized chaos experiments using the same buckling platform is developed. Finally, an optomechanical experimental setup and chip is built for measure-ment of one or multiple NEMS beams. Fiber optic techniques are used for exper-imental setup and grating couplers, ring/racetrack resonators are develoxper-imental setup and grating couplers, ring/racetrack resonators are developed for beam measurements. Critical couplings on multiple devices are observed.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Nanomechanical motion transducers for miniaturized mechanical systems
    (MDPI AG, 2017) Kouh, T.; Hanay, M. S.; Ekinci, K. L.
    Reliable operation of a miniaturized mechanical system requires that nanomechanical motion be transduced into electrical signals (and vice versa) with high fidelity and in a robust manner. Progress in transducer technologies is expected to impact numerous emerging and future applications of micro- and, especially, nanoelectromechanical systems (MEMS and NEMS); furthermore, high-precision measurements of nanomechanical motion are broadly used to study fundamental phenomena in physics and biology. Therefore, development of nanomechanical motion transducers with high sensitivity and bandwidth has been a central research thrust in the fields of MEMS and NEMS. Here, we will review recent progress in this rapidly-advancing area.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback