Nanomechanical buckling for applications in nonlinear dynamics

Limited Access
This item is unavailable until:
2022-01-26
Date
2021-07
Editor(s)
Advisor
Hanay, Mehmet Selim
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

There has not been enough attention on post buckling behavior at nano scale even though it reveals rich nonlinear and chaotic dynamics and has potential to be used on cutting edge sensing, actuation, computation and communication applications. Here, full motion of the nanomechanical buckling, starting from un-buckled position to large deformations at post buckling regime has been precisely measured with error bars of ±7 nm for large deformation regime and ±2.8 nm for √ initial bending, with a noise floor of 38.5 pm/ Hz. Line mode of SEM is used for deflection detection which uses secondary electrons collected from sample and relevant code is developed for data processing. Initial bending, initial buckling and inflection point are well defined which can help us to understand transition to post buckling regime and development of sensors and actuators. Additionally, one well oscillation, double well oscillation and chaotic trajectories are investi-gated using the system as forced double well oscillator. Trajectory plotting is performed with an image processing code which benefits from contrast difference of the device and environment. A new region within double well oscillation regime is observed where motion converts from one well oscillation to double well oscilla-tion which could be a candidate on mechanical computation and communication applications. Also, a preliminary design for synchronized chaos experiments using the same buckling platform is developed. Finally, an optomechanical experimental setup and chip is built for measure-ment of one or multiple NEMS beams. Fiber optic techniques are used for exper-imental setup and grating couplers, ring/racetrack resonators are develoxper-imental setup and grating couplers, ring/racetrack resonators are developed for beam measurements. Critical couplings on multiple devices are observed.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)