Browsing by Subject "Optical response"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Enhanced tunability of V-shaped plasmonic structures using ionic liquid gating and graphene(Elsevier Ltd, 2016) Ozdemir, O.; Aygar, A. M.; Balci, O.; Kocabas, C.; Caglayan, H.; Özbay, EkmelGraphene is a strong candidate for active optoelectronic devices because of its electrostatically tunable optical response. Current substrate back-gating methods are unable to sustain high fields through graphene unless a high gate voltage is applied. In order to solve this problem, ionic liquid gating is used which allows substrate front side gating, thus eliminating the major loss factors such as a dielectric layer and a thick substrate layer. On the other hand, due to its two dimensional nature, graphene interacts weakly with light and this interaction limits its efficiency in optoelectronic devices. However, V-shaped plasmonic antennas can be used to enhance the incident electric field intensity and confine the electric field near graphene thus allowing further interaction with graphene. Combining V-shaped nanoantennas with the tunable response of graphene, the operation wavelength of the devices that utilize V-shaped antennas can be tuned in situ. In the present paper, we demonstrate a graphene-based device with ionic liquid gating and V- shaped plasmonic antennas to both enhance and more effectively tune the total optical response. We are able to tune the transmission response of the device for up to 389 nm by changing the gate voltage by 3.8 V in the mid-infrared regime.Item Open Access Influence of phase function on modeled optical response of nanoparticle-labeled epithelial tissues(2011) Cihan, C.; Arifler, D.Metal nanoparticles can be functionalized with biomolecules to selectively localize in precancerous tissues and can act as optical contrast enhancers for reflectance-based diagnosis of epithelial precancer. We carry out Monte Carlo (MC) simulations to analyze photon propagation through nanoparticle-labeled tissues and to reveal the importance of using a proper form of phase function for modeling purposes. We first employ modified phase functions generated with a weighting scheme that accounts for the relative scattering strengths of unlabeled tissue and nanoparticles. To present a comparative analysis, we repeat ourMCsimulations with simplified functions that only approximate the angular scattering properties of labeled tissues. The results obtained for common optical sensor geometries and biologically relevant labeling schemes indicate that the exact form of the phase function used as model input plays an important role in determining the reflectance response and approximating functions often prove inadequate in predicting the extent of contrast enhancement due to labeling. Detected reflectance intensities computed with different phase functions can differ up to ̃60% and such a significant deviation may even alter the perceived contrast profile. These results need to be taken into account when developing photon propagation models to assess the diagnostic potential of nanoparticle-enhanced optical measurements. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).Item Open Access Silicene dynamic optical response in the presence of external electric and exchange fields(Institute of Physics Publishing Ltd., 2022-01-04) Mirzaei, M.; Vazifehshenas, T.; Salavati-fard, T.; Tanatar, BilalWe investigate the dynamic optical transition of monolayer silicene in the presence of external electric and exchange fields within the low-energy tight-binding model. Applying external electric and exchange fields breaks the silicene band structure spin and valley degeneracies. Three phases of silicene corresponding to different strengths of perpendicular electric field with respect to the spin–orbit coupling (Δz < Δso, Δz = Δso and Δz > Δso) are considered. We obtain the spin-valley-dependent optical responses to the incoming circularly polarized light using the Kubo formula. We show and discuss how the magnitude and direction of the transverse and longitudinal optical responses of such a system change with the electric and exchange fields. Our calculations suggest that the intraband part of the longitudinal optical response as well as the initial point of the interband part have strong dependencies on the exchange field. Furthermore, we show that one of the spin subbands plays a dominant role in the response to polarized light. Depending on the type of incident light polarization, the dominant subband may change. Our results shed light on the relation between silicene dynamic optical responses and externally applied fields.Item Open Access The superconducting transition width and illumination wavelength dependence of the response of MgO substrate YBCO transition edge bolometers(Elsevier BV * North-Holland, 2007) Oktem, B.; Bozbey, A.; Avci, I.; Tepe, M.; Abukay, D.; Fardmanesh, M.Dependence of the phase and magnitude of the response of MgO substrate YBa2Cu3O7-δ (YBCO) transition edge bolometers to the near infrared radiation on the superconducting transition width is presented in this work. The bolometers were made of YBCO thin films of 200 nm thickness that were grown on single crystal MgO (1 0 0) substrates by DC inverted cylindrical magnetron sputtering. We have measured the responses of both large and small area devices with respect to the bias temperature and radiation modulation frequency. We have observed that the superconducting transition width has major effects on the response of the bolometers such as; on a dip of the phase of the response versus modulation frequency curve around 1 Hz, the rate of decrease of the magnitude of the response, and dependence of the phase of the response on temperature at mid-range modulation frequency. We have investigated a correlation between the superconducting transition width and the YBCO film surface morphology of the devices. In addition, the illumination wavelength dependence of the optical response of both wide and narrow transition width devices has been investigated. Here we present the analysis and the possible mechanisms that can affect the response of the bolometers at the superconducting transition region.Item Open Access TiO2 thin film transistor by atomic layer deposition(SPIE, 2013) Okyay, Ali Kemal; Oruç, Feyza B.; Çimen, Furkan; Aygün, Levent E.In this study, TiO2 films were deposited using thermal Atomic Layer Deposition (ALD) system. It is observed that asdeposited ALD TiO 2 films are amorphous and not suitable as TFT channel material. In order to use the film as channel material, a post-annealing process is needed. Annealed films transform into a polycrystalline form containing mixed anatase and rutile phases. For this purpose, devices are annealed at 475°C and observed that their threshold voltage value is 6.5V, subthreshold slope is 0.35 V/dec, Ion/Ioff ratios 2.5×106 and mobility value is 0.672 cm2/V.s. Optical response measurements showed that devices exhibits decent performance at ultraviolet region where TiO 2 has band to band absorption mechanism. © 2013 SPIE.