Browsing by Subject "Optical devices"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access All-chalcogenide glass omnidirectional photonic band gap variable infrared filters(AIP Publishing, 2009) Kondakci, H. E.; Yaman, M.; Koylu, O.; Dana, A.; Bayındır, MehmetWe report on the design, fabrication, and characterization of spatially variable infrared photonic band gap filter that consists of thermally evaporated, high refractive indexcontrast, amorphous chalcogenide glass multilayers. Due to graded thickness structure, the filter exhibits a position dependent stop band and a cavity mode ranging from 1.8 to 3.4 μm3.4 μmwavelengths. Reflection measurements on the variable filter agree well with theoretical calculations. These results pave the way to low-loss infrared mirrors, filters, spectral imaging, and miniaturized spectrometers at infrared region.Item Open Access All-chalcogenide variable infrared filter(SPIE, 2009) Kondakcı, H. Esat; Köyle, Özlem; Yaman, Mecit; Dana, Aykutlu; Bayındır, MehmetWe present the design, fabrication, characterization of spatially variable infrared filter and a demonstration of the filter as a simple infrared spectrometer. A varying photonic band gap filter which consists of thermally evaporated, high refractive index contrast amorphous chalcogenide glass multilayers, makes the structure suitable to be used as spectrometer. Due to graded thickness structure, the filter exhibits a position dependent stop band and a cavity mode ranging from 2 to 8 μm wavelengths. It is demonstrated that the filter can be used to detect absorption peaks of common gases in the cavity mode range of the filter. © 2009 SPIE.Item Open Access Analysis of the elliptic-profile cylindrical reflector with a non-uniform resistivity using the complex source and dual-series approach: H-polarization case(Springer, 2013) Oğuzer, T.; Altintaş, A.; Nosich, A. I.An elliptic-profile reflector with varying resistivity is analyzed under the illumination by an H-polarized beam generated by a complex-source-point (CSP) feed. The emphasis is done on the focusing ability that is potentially important in the applications in the optical range related to the partially transparent mirrors. We formulate the corresponding electromagnetic boundary-value problem and derive a singular integral equation from the resistive-surface boundary conditions. This equation is treated with the aid of the regularization technique called Riemann Hilbert Problem approach, which inverts the stronger singular part analytically, and converted to an infinite-matrix equation of the Fredholm 2nd kind. The resulting numerical algorithm has guaranteed convergence. This type of solution provides more accurate and faster results compared to the known method of moments. In the computations, a CSP feed is placed into a more distant geometrical focus of the elliptic reflector, and the near-field values at the closer focus are plotted and discussed. Various far-field radiation patterns including those for the non-uniform resistive variation on the reflector are also presented.Item Open Access Design of translucent optical networks: Partitioning and restoration(Kluwer, 2004) Karasan, E.; Arisoylu, M.We discuss the problem of designing translucent optical networks composed of restorable, transparent subnetworks interconnected via transponders. We develop an integer linear programming (ILP) formulation for partitioning an optical network topology into subnetworks, where the subnetworks are determined subject to the constraints that each subnetwork satisfies size limitations, and it is two-connected. A greedy heuristic partitioning algorithm is proposed for planar network topologies. We use section restoration for translucent networks where failed connections are rerouted within the subnetwork which contains the failed link. The network design problem of determining working and restoration capacities with section restoration is formulated as an ILP problem. Numerical results show that fiber costs with section restoration are close to those with path restoration for mesh topologies used in this study. It is also shown that the number of transponders with the translucent network architecture is substantially reduced compared to opaque networks.Item Open Access Digital Fourier optics(Optical Society of America, 1996-03-10) Özaktaş, Haldun M.; Miller, D. A. B.Analog Fourier optical processing systems can perform important classes of signal processing operations in parallel, but suffer from limited accuracy. Digital–optical equivalents of such systems could be built that share many features of the analog systems while allowing greater accuracy. We show that the digital equivalent of any system consisting of an arbitrary number of lenses, filters, spatial light modulators, and sections of free space can be constructed. There are many possible applications for such systems as well as many alternative technologies for constructing them; this paper stresses the potential of free-space interconnected active-device-plane-based optoelectronic architectures as a digital signal processing environment. Implementation of the active-device planes through hybridization of optoelectronic components with silicon electronics should allow the realization of systems whose performance exceeds that of purely electronic systems.Item Open Access Enhanced spontaneous emission in semiconductor nanocrystal solids using resonant energy transfer for integrated devices(IEEE, 2008-11) Nizamoğlu, Sedat; Demir, Hilmi VolkanSize-tuneable optical properties of semiconductor nanocrystal (NC) quantum dots make them attractive for a wide range of device applications. However, in these device applications, nanocrystals typically suffer from relatively low quantum efficiency (QE) when they are cast into solid form. To reduce the effect of this problem, we propose and demonstrate the enhancement of spontaneous emission in nanocrystal solids by recycling their trapped excitons through resonant nonradiative Forster energy transfer (ET) for hybrid integrated devices. For this purpose, we designed closely packed CdSe/ZnS core/shell nanocrystal emitters with an energy gradient of approximately 160 meV integrated on LEDs.Item Open Access High-Q silicon-on-insulator optical rib waveguide racetrack resonators(Optical Society of American (OSA), 2005) Kiyat I.; Aydınlı, Atilla; Dagli, N.In this work, detailed design and realization of high quality factor (Q) racetrack resonators based on silicon-on-insulator rib waveguides are presented. Aiming to achieve critical coupling, suitable waveguide geometry is determined after extensive numerical studies of bending loss. The final design is obtained after coupling factor calculations and estimation of propagation loss. Resonators with quality factors (Q) as high as 119000 has been achieved, the highest Q value for resonators based on silicon-on-insulator rib waveguides to date with extinction ratios as large as 12 dB. © 2005 Optical Society of America.Item Open Access Spectrally selective ultrathin photodetectors using strong interference in nanocavity design(Institute of Electrical and Electronics Engineers Inc., 2019) Ghobadi, Amir; Demirağ, Yiğit; Hajian, Hodjat; Toprak, Ahmet; Bütün, Bayram; Özbay, EkmelThinning the active layer's thickness of the semiconductor down to a level comparable with the carriers' diffusion length while keeping its absorption high is an ultimate goal to boost the performance of optoelectronic devices. Strong interference in multilayer structures is one of the promising and practical solutions owing to their simple and large-scale compatible fabrication route. These nanocavity designs not only provide near unity absorption, but they can also be designed in a way that a spectrally selective absorption response can be achieved. In this letter, we will demonstrate the functionality of a metal- insulator-semiconductor (MIS) cavity to obtain spectrally selective ultrathin photodetectors. To prove our theoretical and numerical findings, a 4-nm-thick amorphous silicon (aSi)-based MIS cavity is designed, fabricated, and characterized. The experimental results show that the optimized cavity design can act as an efficient visible blind ultraviolet (UV) photodetector. The proposed design shows the responsivity values of 120 and 2.5 mA/W in the UV (λ = 350 nm) and visible (λ = 500 nm) regions, respectively.Item Open Access Toward an optimal foundation architecture for optoelectronic computing. Part II: Physical construction and application platforms(Optical Society of America, 1997-08-10) Özaktaş, Haldun M.Various issues pertaining to the physical construction of systems that are based on regularly interconnected device planes, such as heat removal and extensibility of the optical interconnections for larger systems, are discussed. Regularly interconnected device planes constitute a foundation architecture that is reasonably close to the best possible as defined by physical limitations. Three application platforms based on the foundation architecture described are offered.Item Open Access Tunable infrared asymmetric light transmission and absorption via graphene-hBN metamaterials(American Institute of Physics, 2019) Hajian, Hodjat; Ghobadi, Amir; Serebryannikov, A. E.; Bütün, Bayram; Vandenbosch, G. A. E.; Özbay, EkmelWe theoretically prove in this paper that using planar multilayer graphene-hexagonal boron nitride (hBN) metamaterials (GhMMs) can yield ultrabroadband and high-contrast asymmetric transmission (AT) and asymmetric absorption (AA) of light. The AA and AT features are obtained in the far-infrared (FIR) and mid-infrared (MIR) regions for normally incident light with transverse magnetic polarization. Here, the GhMMs are integrated with two asymmetric gratings of Ge and are composed of alternating multilayers of graphene (11 multilayers) and hBN layers (10 layers). Moreover, the total subwavelength thickness of the hybrid structures is about 3 μm, being less than half of the free-space wavelength up to nearly 50 THz. This approach—which is similar to the one introduced by Xu and Lezec [Nat. Commun. 5, 4141 (2014)] for a passive hyperbolic metamaterial operating in the visible range—is based on the excitation of high-ββ modes of the GhMM with different transmission characteristics. In addition to being ultrabroadband and high-contrast, AT and AA features of the proposed GhMMs can be actively tuned by varying the chemical potential of graphene. Furthermore, it is shown that an on-off switching of AT factor at FIR and selective tunability at MIR frequencies can be obtained via varying μμ. Due to its subwavelength and planar configuration and active operation, these multilayer graphene-hBN metamaterials with AT and AA characteristics hold promise for integration with compact optical systems operating in the MIR and FIR ranges and are suitable for applications such as optical diodes, sensors, and thermal emitters.Item Open Access Vortex lattice of a Bose-Einstein condensate as a photonic band gap material(IOP Institute of Physics Publishing, 2009) Taşgin, M. E.; Müstecaplioǧlu, Ö. E.; Oktel, M. Ö.Photonic crystal behavior of a rotating Bose-Einstein condensate with a triangular vortex lattice is reviewed and a scheme for getting much wider band gaps is proposed. It is shown that photonic band gaps can be widened an order of magnitude more by using a Raman scheme of index enhancement, in comparison to previously considered upper level microwave scheme.